Paper Status Tracking

Article
Author(s)

Vito Romaniello, Paolo Oddo, Marina Tonani, Lucio Torrisi, Alessandro Grandi and Nadia Pinardi

Affiliation(s)

ABSTRACT

The paper describes and analyzes the sensitivity of an operational atmospheric model to different SST (sea surface temperature) estimates. The model’s sensitivity has been analyzed in a Medicane (Mediterranean hurricane) test case. Numerical simulations have been performed using the COSMO (consortium for small-scale modeling) atmospheric model, in the COSMO-ME configuration. The model results show that the model is capable of capturing the position, timing and intensity of the cyclone. Sensitivity experiments have been carried out using different SSTs surface boundary conditions for the COSMO forecasts. Four different experiments have been carried out: the first two using SST fields obtained from the OSTIA (operational sea surface temperature and sea ice analysis) system, while the other two using the SST analyses and forecasts from MFS (Mediterranean Forecasting System, Tonani et al., 2015; Pinardi and Coppini, 2010). The different boundary conditions determine differences in the trajectory, pressure minimum and wind intensity of the simulated Medicane. The sensitivity experiments showed that a colder than real SST field determines a weakening of the minimum pressure at the vortex center. MFS SST analyses and forecasts allow the COSMO model to simulate more realistic minimum pressure values, trajectories and wind speeds. It was found that MFS SST forecast, as surface boundary conditions for COSMO-ME runs, determines a significant improvement, compared to ASCAT observations, in terms of wind intensity forecast as well as cyclone dimension and location.

KEYWORDS

Mediterranean Sea, Medicane, atmospheric model, oceanic model.

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Coryright © 2015 David Publishing Company All rights reserved, 616 Corporate Way, Suite 2-4876, Valley Cottage, NY 10989
Tel: 1-323-984-7526, 323-410-1082; Fax: 1-323-984-7374, 323-908-0457 , www.davidpublisher.com, Email: order@davidpublishing.com