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Abstract: The classical propositional calculus (often called also as “zero-order logic”), is the most fundamental two-valued logical
system. It is necessary to construct the classical calculus of quantifiers (often called also as “classical calculus of predicates” or
“first-order logic™), which is necessary to construct the classical functional calculus. This last one is being used for formalization of
the Arithmetic System. At the beginning of this paper, we introduce a notation and we repeat certain well-known notions (among
others, the notions of operation of consequence, a system, consistency in the traditional sense, consistency in the absolute sense). Next,
we establish that classical propositional calculus is an inconsistent theory.
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1. Introduction

Let: -, ~, V, A, = denote the connectives of
implication, negation, disjunction, conjunction and
equivalence, respectively. V' = {1,2,...} denotes the
set of all natural numbers.

Next, Aty ={pi,p3, ...p%, 03, .05, %, ..} (k €
N) denotes the set of all propositional variables.
Hence, Sy is the set of all well-formed formulas, which
are built in the usual manner from propositional
variablesby means of logical connectives. Py(¢)
denotes the set of all propositional variables occuring
in ¢ (¢ € So).

Rs, denotes the set of all rules over Sy.E(IM) is
the set of all formulas valid in the matrix 9. I,
denotes the classical two-valued matrix. Z, is the set
of all formulas valid in the matrix 9t, (see [10], cf.
[1-7], [11-13]). Next, SO ={p € Sp: P € Z,& ~¢p ¢

Z5}.
We use =,1,V,&<,v,3 as metalogical
symbols.Next, r, denotes Modus Ponens in

propositional calculus. Hence, Ry = {r,}. We write
XcY forXcY and X+Y. For any X< S, and
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R S Rg,, Cn(R, X) is the smallest subset of S,
containing X, and closed under the rules belonging to
R, whereR < Rg,.

The couple (R,X) is called a system, whenever
R S Rg), and X < S,. Hence, (Ry,Z;) is the system
of the classical propositional calculus.

Now we repeat some well-known definitions (see
[10], cf. [5, 7-9, 11]). Let R € Rg, and X C S,. Then:

Definition 1.1 (R, X) € Cns” & (=3a € Sy) [a €
Cn(R,X)& ~a € Cn(R,X)].
Definition 1.2 (R,X) € Cns* & Cn(R,X) # S,.

(R,X) € CnsT denotes that the system (R,X) is
consistent in the traditional sense. (R,X) € Cns4
denotes that the system (R,X) is consistent in the
absolute sense (see [10], cf.[11]).

2. The Main Result

Theorem (R, Z,) ¢ CnsT. (cf. [14]).
Proof. Elementary.
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