Proof of God’s Nonexistence

Duane Altheide
Independent Scholar, Bellevue, Washington, USA

This philosophical letter draws logical consequences from God’s definition as “unconditional love.” These consequences cast doubt on God’s existence. If God doesn’t exist, if we are really alone, then what really matters is our love, wisdom, and compassion for each other.

Keywords: unconditional love, God’s chosen people, native Americans, world history, randomness, lawfulness, quantum mechanics, Tolstoy

Introduction

This paper unravels the God narrative that has reflexively shaped philosophy, religion, and science. As a philosopher in exile, who has examined major statements by philosophers and scientists for 50 years (Altheide, 2017; 2018), I suggest that the conundrum of God’s existence is ironically unraveled by accepting the widespread definition of God as “unconditional love”, and then explicating how the divine hypothesis falters against logic and empirical physical science. The paper then draws on previous integrations of primary and secondary sources in philosophy and physics (Altheide, 2019) to bolster the idea that unconditional love remains as an ideal and challenge to human ingenuity and fragility.

The Philosophical Setting

The theologian is unfair to the atheist when he/she states that you cannot prove that God doesn’t exist. This is the case because general statements about existence cannot be disproved. For example, take the general statement “Flying saucers exist”. Now there is no way to prove that flying saucers don’t exist; however, you need to find only one flying saucer to prove that they do indeed exist (Frey, 1979). Likewise, the statement “God exists” cannot be disproved.

Looking at “the other side of the coin”, the same logic dictates that just as you cannot prove that God doesn’t exist, so you cannot prove the “realness” of a scientific theory. In the case of “God doesn’t exist” we are trying to prove a negative statement—negative outcome—about general existence. ((A negative prediction/expectation (God doesn’t exist) is “attached to” or “deduced from” a statement about general existence (God exists)).) In the case of a scientific theory, the opposite is the case: Using physics as our model of a science, a scientific (physical) theory is also a statement about general existence; nevertheless, science, instead of making a negative prediction—God doesn’t exist—makes a positive prediction. For example, a consequence of the equation \(E = mc^2 \) is the theoretical existence of an atom bomb. And the realization of an atom bomb would be a verification of the theory \(E = mc^2 \). But regardless of how many successful experiments we record, we can never prove the theory of relativity but only strengthen it. For example,

Duane Altheide, Ph.D., Independent Scholar, Bellevue, Washington, USA.
quantum mechanics is the most successful theory we have because it has proved true in every single case; nevertheless, quantum mechanics as a theory is overwhelmingly strong but not absolutely proved.

From a physical theory are drawn logical deductions/predictions in the form of specific events. Then an experiment or observation is done to see if the prediction/event does indeed occur. If it occurs, the theory is merely strengthened. And if the event does not occur, then we know that the theory is false or at least needs to be reframed. Thus, scientific theories can only be falsified or strengthened but never proved.

The logical consequences/predictions of a physical theory are specific events/situations; that is why they can be tested. But negative statements (God doesn’t exist) about general existence (God exists), don’t produce a specific prediction and, therefore, cannot be tested. Thus, in order to prove that God does not exist, we must link God to a specific trait or predicate or a specific behavior.

Just as we must deduce consequences from a physical theory in order to predict specific events, so we must draw the logical/deductive consequences of the hypothesis “God exists”. We must logically conclude and predict specific events or situations from the hypothesis, “God exists”, and test them in order to strengthen or falsify the hypothesis “God exists”.

A Definition of God

Even in the Christian faith, there are many definitions of God; but one definition that is generally accepted by Christians defines God as “unconditional love”. So, unconditional love is our definition of God. Now in order to “test” God’s existence, we must ask, “What is a logical consequence of God’s definition as unconditional love?” What particular trait or characteristic of God can be predicted or deduced? A logical deduction, from the definition of God as unconditional love, is the prediction that God is not a racist. (If God were a racist, then why call Him God?) For purposes of our test, we further define God—“God isn’t a racist”—as a logical deduction from God’s definition as unconditional love. Thus, God as unconditional love is more finely defined as not being a racist, which means that God would not act or behave like a racist when He intervenes in human events. (For if God never intervenes, then what is the sense of God watching over us?)

In the *Death of Atheism* we learned that God is not a racist (Altheide, 2018, p. 136ff). The bottom line is this: Buddha would say that race prejudice is a mental fetter and since God has no fetters, it’s logically impossible for God to be a racist.

God’s Chosen People

God as unconditional love cannot love one group of people more than another and cannot treat them better in how He intervenes in human affairs. God loves all people equally. “Jesus loves the little children, all the children of the world: yellow, black, and white, they are precious in His sight”. Therefore, we may conclude that God intervenes equally across all races.

God intervened on behalf of the Children of Israel when they were fleeing from the Egyptians by parting the Red Sea (Exodus 14: 21). “And Moses stretched out his hand over the sea; and the LORD caused the sea to go back by a strong east wind all that night, and made the sea dry land and the waters were divided” (Thompson, 1957, p. 70). Thus, the children of Israel were able to escape from the pursuing Egyptians.

However, it’s a different story with the Native Americans because in “Godless” we learned that God behaved like a racist (Altheide, 2017, p. 41ff). By helping our first group and not helping our second group—two groups with a different skin color—God behaved like a racist. For example, within the context of
God parting the sea, God did nothing to help the Indians with a smallpox pandemic.

It is not an isolated incident in history that the smallpox pandemic among the Indians aided the conquistadors. And the fact is that

...one of the key factors in world history is diseases transmitted to peoples lacking immunity by invading peoples with considerable immunity. Smallpox, measles, influenza, typhus, bubonic plague, and other infectious diseases endemic in Europe played a decisive role in European conquests, by decimating many people on other continents. For example, a smallpox epidemic devastated the Aztecs after the failure of the first Spanish attack in 1520. Throughout the Americas, diseases introduced by Europeans spread from tribe to tribe far in advance of the Europeans themselves, killing an estimated 95 percent of the pre-Columbian Native American population. (Diamond, 1999, p. 77f)

World History Is Not Sensible Because God Behaved Like a Racist

Because God had intervened on the macrolevel by parting the sea for the Jews, it’s unreasonable that God would not intervene on the microlevel to stop the smallpox. But maybe God is not reasonable; but then again, a racist is not reasonable. That God is not reasonable is seen in world history because world history doesn’t make sense. “O my friends! Thus speaketh the discerning one: shame, shame, shame—that is the history of man!” (Nietzsche, 1954, p. 93)

Dostoevsky depicts the nonsense of world history very well. Here is what he says about world history.

Try casting a glance at the history of mankind; well, what will you see? Majestic? Maybe it is majestic. Colorful? Maybe it is colorful. Monotonous? Well, maybe also monotonous: they fight and fight, they fight now, and fought before, and fought afterwards—you’ll agree it’s even all too monotonous. In short, anything can be said about world history, anything that might just enter the head of the most disturbed imagination. Only one thing cannot be a said—that it is sensible. You’d choke on the first word. (Dostoevsky, 1993, p. 29f)

World history is not sensible; in other words, it is unintelligible. The atheist claims that the universe is ultimately unintelligible. The theist invokes God to make the universe intelligible as in Thomas Aquinas’ first-cause argument. Unfortunately, according to Emeritus Professor Frey (Class Notes: Lectures in the Philosophy of Anthropology, U. of Innsbruck, 1975), we cannot know if the universe is intelligible or unintelligible. For example, we shall never have enough knowledge to know if an unexpected event—such as a comet striking the earth and killing every living creature—was random or predetermined. Thus, because we can never know if the universe is random (unintelligible) or determined (intelligible), the question of God’s existence will forever remain for our reflection.

The theist says the universe is intelligible because God makes it so. The atheist says the universe is ultimately unintelligible and points to the fact that world history isn’t sensible, and isn’t intelligible. Furthermore, in agreement in world history, quantum mechanics also indicates that the universe is ultimately unintelligible.

God Doesn’t Throw Dice

That world history is not sensible indicates a randomness—which is why the Jews and Indians were treated differently by God—and this randomness is reflected in quantum mechanics. But God, defined as unconditional love, would not allow events to be random: After having parted the Red Sea, could it really be that God would let his chosen people and the rest on humanity at the whim of chance, caprice of probability? Thus, it is well known that Einstein boldly asserted that “der Herr wuerfelt nicht” (“God doesn’t throw dice”) ((Bohr replied, “Stop telling God what to do!”) (Fabric of the Cosmos, 2011, Disc 3)). A logical consequence
of God being defined as unconditional love is that God would not throw dice in the course of human affairs and in nature. But from world history we know that God has thrown the dice in human affairs.

And in contrast to God’s definition as unconditional love, He also throws dice in the microscopic world because the microscopic world contains randomness. But the fact of the matter is that quantum mechanics, which is based on probability, has worked in each and every case and is the most successful theory we have. For those unfamiliar with quantum mechanics, the following is a short piece describing some randomness in nature.

In the classical model the universe is ruled by a “hard determinism” because in principle, everything in the universe can be predicted. However, quantum mechanics is very different.

Quantum mechanics breaks with this tradition. We ‘cannot’ ever know the exact location and exact velocity of even a single particle. We “cannot” predict with total certainty the outcome of even the simplest of experiments, let alone the evolution of the entire cosmos. Quantum mechanics shows that the best we can ever do is predict the “probability” that an experiment will turn out this way or that. And quantum mechanics has been verified through decades of fantastically accurate experiments. (Greene, 2004, p. 79)

Thus, we have gone from the “hard determinism” of classical physics to the “soft determinism” of quantum physics.

“But the break with the past is yet more complete. What differentiates quantum from classical reasoning is Heisenberg’s uncertainty principle” (Greene, 1999, p. 112). In 1927 the German physicist Werner Heisenberg discovered that the finer you measure the position of a subatomic particle, the fuzzier will be the measurement of its speed and the finer you measure the speed, the fuzzier is the measurement of the particle’s position, which means that you cannot determine the particle’s trajectory.

In order to look at atoms to measure their position and speed, you need an electronic microscope. But the electronic microscope uses more light to see subatomic particles; light, or photons which are particles of light, is energy and this energy has an effect on the particles. “…high-frequency photons have a lot of energy and therefore give the electrons a sharp kick” (Greene, 1999, p. 118).

But why can’t we determine the electron’s position with an “every gentler” light source in order to have an ever decreasing impact on its motion? From the standpoint of nineteenth-century physics we can. By using an even dimmer lamp (and an even more sensitive light detector) we can have a vanishingly small impact on the electron’s motion. But quantum mechanics itself illuminates a flaw in this reasoning. As we turn down the intensity of the light source, we now know that we are decreasing the number of photons it emits. Once we get down to emitting individual photons, we cannot dim the light any further without actually turning it off. There is a fundamental quantum mechanical limit to the “gentleness” of our probe. And hence, there is always a minimal disruption that we cause to the electron’s velocity through our measurement of its position. (Greene, 1999, p. 112f)

By using light of lower and lower frequency (larger and larger wavelength) we can thereby produce even gentler individual photons. But here’s the catch. When we bounce a wave off of an object, the information we receive is only enough to determine the object’s position to within a margin of error equal to the wave’s wavelength. …a photon, therefore, can be used to pinpoint an object’s location only to within a precision of one wavelength. (Green, 1999, p. 113)

Thus, there is a limit to how precisely we can investigate the microscopic realm because we cannot possibly know both the speed and position of an electron; this is true not only for electrons but for all particles of nature (Greene, 1999, p. 114). Hence, “Heisenberg showed that the trade-off between the precision of position and velocity measurements is a fundamental fact that holds true regardless of the equipment used or the procedure
employed” (Greene, 1999, p. 114). Therefore, when dealing with the microscopic world, there appears to be an amount of chaos in nature just as in the macroscopic world of history.

This chaos in nature, this inability to precisely measure both a particle’s speed and position, is the basis of “quantum jitters”, the fact that you cannot get a particle to sit still.

In fact, if you were to capture a single electron in a big, solid box and then slowly crush the sides to pinpoint its position with ever greater precision, you would find the electron getting more and more frantic. Almost as if it were overcome with claustrophobia, the electron will go increasingly haywire—bouncing off of the walls of the box with increasingly frenetic and unpredictable speed. Nature does not allow its constituents to be cornered. … Precisely this kind of quantum claustrophobia is a pervasive feature of the microscopic realm. The motion of microscopic particles becomes increasingly wild when they are examined and confined to ever smaller regions of space. (Greene, 1999, p. 114f)

To deal with this uncertainty physicists had to use probability theory.

…at the microscopic level we learn that the best we can ever do is say that an electron has a particular probability of being found at any given location. …the number of times the electron is found at any given location is governed by the shape of the electron’s probability wave. (Greene, 1999, p. 106f)

“One of the main insights of quantum mechanics is that our predictive power is fundamentally limited to asserting that such-and-such outcome will occur with such-and-such probability” (Greene, 1999, p. 201).

Thus, chance plays a crucial role in the microscopic world as well as in world history. And this ultimately contradicts God’s definition as unconditional love.

Love

Our arguments, of racism and quantum jitters, are strong indicators that the cosmos is ultimately unintelligible and this contradicts God’s definition as unconditional love; therefore, God doesn’t exist. What if there is no God to save us? From From Death to Death (An Updated-Ancient Guide on How to Die) we know that each one of us must save him/herself by learning to see death as a friend (Altheide, 2019). And if we can see death as a friend, at the point of death we shall realize that what really matters is the love we have to give each other.

Tolstoy wrote: “Man does not live by care for himself, but by love for others. …all men live, not by reason of any care they have for themselves, but by the love for them that is in other people” (Tolstoy, 1971, p. 56).

Thus, we see atheism blending with theism. For the atheist, unconditional love translates into wisdom and compassion. Buddha said that in order to be a perfect person, you must possess an equal amount of wisdom and compassion (Rahula, 1990, p. 46). All the major religions of the world teach wisdom and compassion. Liberty and wisdom and compassion remain the hope of humanity. And Tolstoy would surely agree with Saint Augustine that love is the beauty of the soul.

References