Prevalence of Decreased Susceptibility of *Cryptococcus* spp. Isolates to Fluconazole in Urban Sources of Presidente Prudente

Camila Marçon, Caroline Lucio Moreira, Daniela Adélia Fernandes Inocêncio, Larissa Rodrigues de Oliveira, Mariana Polidorio Kato, Joyce Marinho de Souza, Marcus Vinícius Pimenta Rodrigues and Daniela Vanessa Moris

The Department of Immunology and Microbiology, University of Western São Paulo, São Paulo 19050-920, Brazil

Abstract: The genus *Cryptococcus* is composed of encapsulated yeasts that have the ability to infect and cause disease in humans, as *Cryptococcus gattii/Cryptococcus neoformans* species complex. Facing the current research panel, few studies about cryptococcosis and epidemiological data have been carried out in the western region of Sao Paulo state. This study aimed to verify the occurrence of *Cryptococcus* spp. in public areas of the city of Presidente Prudente, using pigeon droppings and tree hollows as an environmental source. The samples were identified by conventional mycological methods. Were collected 54 samples from pigeon droppings and 62 samples from tree hollows of the genus *Licania*. And of these samples, 47 (87.0%) and 14 (22.5%) had positive growth of yeast from pigeon droppings and tree hollows, respectively. *Cryptococcus* was identified in 11 (20.4%) of the samples from pigeon droppings and 3 (21.4%) of those from tree hollows. The following species were identified: *Cryptococcus neoformans* (7.15%), *Cryptococcus laurentii* (14.28%), and *Cryptococcus albidus* (78.57%). Decreased susceptibility to fluconazole was observed for some isolates. Fluconazole exhibited a limited *in vitro* activity, particularly against *Cryptococcus albidus* and *Cryptococcus laurentii*. Identification and susceptibility testing of *Cryptococcus* spp. should be performed on a routine basis in view of their unpredictable susceptibility profiles.

Key words: Droppings, pigeons (*Columba livia*), tree hollows, *in vitro* *Cryptococcus* spp., susceptibility test.

1. Introduction

Cryptococcus (*C.*.) spp. is a genus of fungi belonging to class basidiomycota, which in the asexual phase occur as yeasts from 2-10 µm diameters. Pathogenic species are surrounded by a polysaccharide capsule, which is their principle morphological characteristic [1]. Although there are more than 100 species of *Cryptococcus*, the responsible for the vast majority of human infections is the *Cryptococcus gattii/Cryptococcus neoformans* species complex [2-4].

C. neoformans is composed of a polysaccharide capsule with polymers of xylose, manose and gluconic acid, increasing its virulence. Beyond this, it has the ability to neutralize host defense cells by means of substances such as melanin and mannitol, which destabilize the host cell membranes through phospholipases. It has the ability to grow at a temperature of 37 °C and is characterized as a cosmopolitan fungus, present in regions with tropical, subtropical and temperate climates [5-8]. Within this ecological niches are aged and dried bird feces, principally from pigeons (*Columba livia*), and there is a lower concentration of bacteria, and therefore less ecological competition. Furthermore, these substrates are rich in urea and creatine, substrates that favor the growth of yeast [8]. The isolation of *C. neoformans* from soil contaminated with pigeon excrement, in which the fungus remains viable, is the basis of the
concept that the infection has an environmental origin [9, 10].

C. gattii occurs principally in the regions with a tropical, subtropical climate, as well as in regions with the lesser extent temperate. In Brazil, it was identified in the Parque do Ibirapuera, located in Sao Paulo, and in eucalyptus plantations in Teresina, Piauí state. However, studies showed the occurrence of *C. gattii* in tropical trees from north and northeast of Brazil, such as Cássia (*Cassia spectabilis*), Oiti (*Licania tomentosa*), Mulungu (*Erythrina verna*) and Guettarda (*Guettarda viburnoides*) [11-14].

In addition to *C. neoformans/C. gattii* complex, there are other species of non-*C. neoformans* and non-*C. gattii* considered saprophytes, and non-pathogenic. Those representative species, *C. albidos* and *C. lauritii*, have been isolated from food, aquatic environments, soil, bird droppings and human skin [15]. However, in the last years it was verified that these non-pathogenic species can cause injuries to individuals with some types of immune deficiency, compromising the central nervous system leading to fungemia [16-18].

This paper evaluated the occurrence of *Cryptococcus* spp. In public areas of Presidente Prudente city, in Sao Paulo state, and determination the prevalence of *Cryptococcus* spp. isolated from pigeon droppings found in locations such as Praça Monsenhor Sarrion, Catedral São Sebastião, Universidade do Oeste Paulista—UNOESTE campus, and outdoor areas of the Hospital Regional de Presidente Prudente—HR. Furthermore, the study determined the prevalence of *Cryptococcus* spp. within tree hollows of *Licania tomentosa*, located in the areas where pigeon dropping isolates were collected, and the MIC (minimum inhibitory concentration) of the fungicide fluconazole was determined for species of *Cryptococcus* isolated from these areas. The tree species was chosen due to its high prevalence in locals of collect pigeon dropping.

2. Materials and Methods

The city of Presidente Prudente is located in the western region of Sao Paulo state, 560 km from the capital, at latitude 22°07′04″ S, longitude 51°22′57″ W. This city is part of a transitional climate area, with elevated temperature and precipitation—150 to 200 mm per month—in spring and summer, with a maximum mean temperature between 27 °C and 29 °C and extratropical systems in the autumn and winter with low humidity and precipitation—20 to 50 mm per month—and mean minimum temperatures between 16 °C and 18 °C [19].

2.1 Sample Collection

A total of 116 samples of bird droppings were collected from different locations in the City of Presidente Prudente, SP, during late Autumn until Spring (form May 1st to November 20th), 2014. The specimens were placed in the sterile tube collectors, standardised, and sent to the Microbiologia and Imunologia building, Bloco G, campus I of the Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, State of São Paulo, Brazil.

For the collection of samples from bird droppings and tree hollows, ten sampling sites were defined in Praça Nove de Julho, Praça Monsenhor Sarrion—Catedral São Sebastião, Hospital Regional de Presidente Prudente—HR, and Campus I of Universidade do Oeste Paulista (UNOESTE).

2.2 Isolation and Identification of the Yeast

The collection of pigeon dropping samples was carried out by means of sterile spatulas and placed in sterile plastic pots identified by the date and location of collection. The samples from tree hollows were obtained with sterile swabs by passing it inside the tree hollows and transferring them to labeled sterile plastic pots. To isolate *Cryptococcus* spp., 1 g of the biological material was weighed and placed into Falcon tubes containing 10 mL of sterilized saline solution (0.85%
Prevalence of Decreased Susceptibility of *Cryptococcus* spp. Isolates to Fluconazole in Urban Sources of Presidente Prudente

NaCl) supplemented with 0.05 g/L chloramphenicol. The specimens were subsequently stirred for three minutes in a vortex apparatus. After stirring, the materials were allowed to stand for five minutes and were then diluted with saline containing chloramphenicol (1:100 dilution). A 0.1 mL aliquot of the supernatant was removed and seeded in triplicate on Niger agar. The cultures were incubated at room temperature and observed daily for up to 10 days to evaluate the colony morphology.

To identify *Cryptococcus* species, isolates were subjected to morphological and physiological tests, including the production of phenol oxidase on Niger agar, the detection of urease in Christensen’s media, carbon and nitrogen assimilation. For the biochemical tests, the auxanographic technique was used to evaluate the assimilation of 11 carbon sources (dextrose, lactose, maltose, sucrose, inositol, galactose, cellobiose, dulcitol, melibiose, trehalose, and raffinose) and two nitrogen sources (peptone and potassium nitrate).

2.3 Susceptibility Testing

The susceptibility to fluconazole test was performed following the recommendations proposed by the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing (EUCAST) [20]. *Candida parapsilosis* ATCC 22019 and *Candida krusei* ATCC 6258 were used as quality control strains. The antifungal agent used for the study was fluconazole (Sigma S. A.), the MIC end point was defined as 50% of growth inhibition.

3. Results

3.1 Environmental Isolates

A total of 54 samples were collected from pigeon droppings and 62 samples from tree hollows. The frequency of yeast isolation was 87.0% (n = 47) in pigeon droppings and 22.5% (n = 14) in tree hollows. *Cryptococcus* was identified in 23.4% (n = 11) samples isolated from pigeon droppings and in 21.4% (n = 3) samples from tree hollows (*Licania* sp).

The samples of *Cryptococcus* spp. were evaluated as pigeon droppings collected either from cement, dirt or tree hollows. Out of 32 samples of pigeon droppings collected from cement, 5 (15.6%) were positive for *Cryptococcus* spp., and out of a total of 22 samples collected from dirt, 6 (27.3%) were identified as *Cryptococcus* spp.

By location of collection, at the “Praça Monsenhor Sarrion”, 6 out of 26 (23.1%) positive samples for *Cryptococcus* spp., at “Praça Nove de Julho”, 4 out of 16 samples (25.0%) were positive for *Cryptococcus* spp. and at Unoeste Campus I, 1 out of 12 samples (8.3%) was positive for *Cryptococcus*. “Hospital Regional de Presidente Prudente”, did not present positive results. Additionally, 4 (7.4%) samples were positive for *Saccharomyces* spp., 9 (16.6%) for *Candida* spp., 16 (29.6%) for *Rhodotorula* spp. and 7 (13%) presented growth of *Trichosporon* spp. About samples from tree hollows, 8 (12.9%) samples had *Rhodotorula* spp. and 3 (4.8%) *Trichosporon* spp. Isolated, as shown in Table 1.

About *Cryptococcus* spp. positivity in droppings, 8 (78.6%) were identified as *C. albidus*, 2 (14.3%) as *C. laurentii* and 1 (7.1%) as *C. neoformans*, shown in Table 2. From the 3 tree hollow *Licania tomentosa* samples, positive for *Cryptococcus*, 100% were identified as *C. albidus* and were isolated from “Praça Monsenhor Sarrion”.

3.2 Susceptibility Testing

Decreased susceptibility to fluconazole was observed for some isolates. The percentage of strains with decreased *in vitro* antifungal susceptibility included a total of 9 strains (82.0%, 9/11) of *C. albidus* which were found to have an MIC to fluconazole ≥ 16 mg/L, and 1 strain (50.0%, 1/2) of the *C. laurentii* strains was found to have a fluconazole MIC of ≥ 16 mg/L (Table 2).

4. Discussion

Since the 1950s, through the research developed by
Table 1 Collection sites, number of samples, ambient temperature, environmental niches of city and region, and absolute / relative isolation of *Cryptococcus* in Presidente Prudente, State of São Paulo, Brazil.

<table>
<thead>
<tr>
<th>Collections sites</th>
<th>Number of samples collected/positive sample</th>
<th>Environmental niche</th>
<th>Isolate</th>
<th>Average ambient temperature (°C)</th>
<th>Absolute isolation (%) /relative isolation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praça Monsenhor Sarrion</td>
<td>26/06</td>
<td>Columbia livia droppings</td>
<td>Cryptococcus spp.</td>
<td>22.48</td>
<td>11.1/23.1</td>
</tr>
<tr>
<td></td>
<td>26/02</td>
<td></td>
<td>Candida spp.</td>
<td>3.7/7.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26/07</td>
<td></td>
<td>Rhodotorula spp.</td>
<td>12.9/26.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26/02</td>
<td></td>
<td>Trichosporon spp.</td>
<td>3.7/7.7</td>
<td></td>
</tr>
<tr>
<td>Praça 09 de julho</td>
<td>16/04</td>
<td></td>
<td>Cryptococcus spp.</td>
<td>22.09</td>
<td>7.5/25.0</td>
</tr>
<tr>
<td></td>
<td>16/04</td>
<td></td>
<td>Candida spp.</td>
<td>7.5/25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/07</td>
<td></td>
<td>Rhodotorula spp.</td>
<td>12.9/43.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/05</td>
<td></td>
<td>Trichosporon spp.</td>
<td>9.2/31.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16/01</td>
<td></td>
<td>Saccharomyces spp.</td>
<td>1.9/6.2</td>
<td></td>
</tr>
<tr>
<td>Universidade do Oeste Paulista (UNOESTE)*</td>
<td>12/01</td>
<td></td>
<td>Cryptococcus spp.</td>
<td>20.42</td>
<td>1.9/8.3</td>
</tr>
<tr>
<td></td>
<td>12/03</td>
<td></td>
<td>Candida spp.</td>
<td>5.5/25.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/02</td>
<td></td>
<td>Rhodotorula spp.</td>
<td>3.7/16.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/03</td>
<td></td>
<td>Saccharomyces spp.</td>
<td>5.5/25.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54/47</td>
<td></td>
<td></td>
<td>87.0/ -</td>
<td></td>
</tr>
<tr>
<td>Praça Monsenhor Sarrion</td>
<td>26/06</td>
<td>Tree hollows (Licania tomentosa)</td>
<td>Cryptococcus spp.</td>
<td>18.9</td>
<td>4.8/11.5</td>
</tr>
<tr>
<td></td>
<td>26/02</td>
<td></td>
<td>Rhodotorula spp.</td>
<td>9.6/23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26/02</td>
<td></td>
<td>Trichosporon spp.</td>
<td>3.3/7.7</td>
<td></td>
</tr>
<tr>
<td>Praça 09 de julho</td>
<td>09/02</td>
<td></td>
<td>Cryptococcus laurentii</td>
<td>21.5</td>
<td>3.3/22.2</td>
</tr>
<tr>
<td></td>
<td>09/01</td>
<td></td>
<td>Rhodotorula spp.</td>
<td>1.6/11.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichosporon spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional hospital*</td>
<td>27/00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>62/14</td>
<td></td>
<td></td>
<td>22.5/ -</td>
<td></td>
</tr>
<tr>
<td>Samples total</td>
<td>116/61</td>
<td></td>
<td></td>
<td>52.5/ -</td>
<td></td>
</tr>
</tbody>
</table>

* At the Universidade do Oeste Paulista (UNOESTE) no genus of the tree *Licania tomentosa* was found. At the Regional hospital* no Columbia livia droppings were found.

Table 2 MIC values of environmental isolates of *Cryptococcus* spp. to fluconazole.

<table>
<thead>
<tr>
<th>Species (%)</th>
<th>Environmental niche (Number of isolates)</th>
<th>Collections sites</th>
<th>Average ambient temperature (°C)</th>
<th>Median (mg/L)</th>
<th>Mode (mg/L)</th>
<th>MIC (mg/L) range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptococcus neoformans (7.2)</td>
<td>Columbia livia droppings (01)</td>
<td>Universidade do Oeste Paulista (UNOESTE)</td>
<td>22.1</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Cryptococcus albidos (78.6)</td>
<td>Columbia livia droppings (08)</td>
<td>Praça Monsenhor Sarrion/Praça Nove de Julho</td>
<td>24.4</td>
<td>64.0</td>
<td>64.0</td>
<td>0.5-64.0</td>
</tr>
<tr>
<td></td>
<td>Tree hollows (Licania tomentosa)(03)</td>
<td>Praça Monsenhor Sarrion</td>
<td>18.9</td>
<td>64.0</td>
<td>64.0</td>
<td>0.5-64.0</td>
</tr>
<tr>
<td>Cryptococcus laurentii (14.2)</td>
<td>Columbia livia droppings (02)</td>
<td>Praça Nove de Julho</td>
<td>22.5</td>
<td>24.0</td>
<td>-</td>
<td>16.0-64.0</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td>21.9</td>
<td>-</td>
<td>-</td>
<td>0.5-64.0</td>
</tr>
</tbody>
</table>

[9, 10], the presence of *Cryptococcus* spp. is related to pigeon droppings, which establishes the environmental origin of infection by this fungus. Similar study, Ref. [21] during winter identified 14 samples (7.68%) positive for *Cryptococcus* spp. in pigeon droppings, a lower result than in the present study. This difference in prevalence could be due to the bad growth conditions for fungus, possibly because of lower temperatures when the samples were collected [21]. Larger proportion of isolates identified as *Cryptococcus* spp. at Praça Nove de Julho is possibly related to the large quantity of droppings present there, whereas at Unoeste campus I, where is daily cleaning, and there was no accumulation of droppings, making their isolation
Prevalence of Decreased Susceptibility of Cryptococcus spp. Isolates to Fluconazole in Urban Sources of Presidente Prudente

more difficult.

The Cryptococcus species known as non-C. neoformans—C. laurentii and C. albidus were isolated with a higher frequency compared to the only sample identified as C. neoformans. These yeasts are found in air, water, wood, soil, pigeon droppings, and in foods such as fruit, pork and beans [18]. C. laurentii is distinguished by its adaptive ability to live in various environments, as it is isolated from areas with tropical climates as well as regions with below zero temperatures, such as Antartica [22]. Ref. [23] identified 23 samples of Cryptococcus neoformans in pigeon droppings and 5 samples of C. neoformans in decomposing eucalyptus leaves. Additionally, a study carried out by Ref. [24] with bird droppings of captive birds and bird droppings in the external environments identified 38 samples of Cryptococcus laurentii, showing a heterogeneity of the isolates.

Furthermore, starting with the droppings contaminated with Cryptococcus it is possible for a spread and colonization of nearby tree hollows by these yeasts [25]. This fact was observed in our study, since at Praça Monsenhor Sarrion 6 (75.0%) C. albidus out of 8 samples were isolated from this square, the same place where 3 (100%) of the samples of C. albidus were isolated from tree hollows. Ref. [26] studied species of trees characteristic of the region and local flora in Spain, they identified 56 Cryptococcus spp., 31 (55.4%) of this were C. albidus, 14 (25%) C. gattii, 9 (16.1%) C. neoformans and 2 (3.6%) C. laurentii. Their results show the high prevalence of C. albidus isolates as well as evidence that C. gattii is not the most frequently isolated type in these locations [26].

The present study corroborates to Ref. [28], who identified Cryptococcus spp. in 5 samples of tree hollows and bark, 2 of C. neoformans, 2 of C. gattii and one of C. laurentii, in Vitória, Espírito Santo, Brazil. As presented 3 positive Cryptococcus spp. isolated from tree hollows, thus 100.0% of samples are positive for C. albidus in tree hollows (Licania tomentosa) at Praça Monsenhos Sarrion, where large amounts of droppings and pigeons were seen.

We did not observe climatic influences over the Cryptococcus isolates (Average of 21.9 ºC), a greater number of positive samples might demonstrate a controversy result. Other studies found C. albidus, C. laurentii and C. neoformans from pigeon droppings and plant material with different prevalence according to the climate, region and quantity of material collected [13, 27, 29, 30].

Our study also identified other yeasts in pigeon droppings different than Cryptococcus, such as Rhodotorula spp. in the highest frequency, followed by Candida spp., Trichosporon spp., and Saccharomyces spp. Yeasts of genus Rhodotorula and Trichosporon were also found in tree hollows. These results are similar to reported by Ref. [31] that evaluated pigeon droppings and tree hollows, where in 13 Cryptococcus spp. positive samples (10 C. neoformans and 3 C. laurentii), 9 Candida albicans, 1 Candida tropicalis, 1 Candida krusei, 1 Candida parapsilosis, 6 Rhodotorula spp. and 3 Trichosporon were found. Authors isolated Candida glabrata in tree hollows. These data are similar to those found in our work, which confirms that different types of yeasts can share the same ecological niche.

Our results and data from the literature indicate that C. albidus and C. laurentii exhibited a decreased susceptibility to fluconazole, according to those shown by Ref. [16]. It is important to remember that the isolates studied by Ref. [16] were clinical isolates, which showed the same susceptibility profiles as the present study.

Studies have linked resistance to azole antifungals, particularly fluconazole in large scale fungicide use in agriculture, which easily disperse in the air, making previously susceptible environmental strains resistant [32, 33]. It has also been related to an intrinsic characteristic of Cryptococcus, since studies with clinical and environmental samples 20 years before the beginning of the use of fluconazole had already shown resistant strains. This intrinsic characteristic is
considered an adaptive response to stress, and as during the use of fluconazole, it could be reversible with the cessation of use. The greatest impact of this is that fewer strains are susceptible [34]. In view of the different susceptibility profiles of fungal species, and large distribution of these species in the environment, the characterization at species level of clinical isolates of the Cryptococcus is compulsory. In addition, the identification of these fungi can be difficult for clinical laboratories, making it necessary to dispatch isolates of Cryptococcus spp. to reference centers. Since such identification could take several weeks, in vitro susceptibility testing of isolates belonging with genus Cryptococcus should be carried out in clinical laboratories on a routine basis.

5. Conclusions

In this study pathogenic species had been less isolated (1 sample of C. neoformans) in pigeon droppings and tree hollows (Licania tomentosa), than other species such as C. albidos and C. laurentii had been isolated in greater number, and exhibited a decreased susceptibility to fluconazole. The identification of infested areas, proper control of birds, and the disinfection of these environments are essential for the epidemiological control of cryptococcosis. Identification and susceptibility testing of Cryptococcus spp. should be performed on a routine basis in view of their unpredictable susceptibility profiles.

Acknowledgments

We thank Dr. Margarete Cristiane de Costa Trindade Amorim from Departamento de Geografia of Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), for her assistance with the meteorological date. We thank CNPq, for the PIBIC (Programa Institucional de Bolsas de Iniciação Científica).

Declaration of interest: The authors report no conflicts of interests. The authors alone are responsible for the content and writing of the paper.

References

