Li₂MoO₄ Crystals Grown by Low-Thermal-Gradient Czochralski Technique

Veronika Grigorieva¹, Vladimir Shlegel¹, Tatyana Bekker²,³,⁴, Nina Ivannikova¹, Andrea Giuliani⁵,⁶, Pierre de Marcillac⁵, Stefanos Marnieros⁵, Valentina Novati⁵, Emiliano Olivieri⁵, Denys Poda⁵,⁷, Claudia Nones⁶, Anastasiia Zolotarova⁶ and Fedor Danevich⁷

¹ Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russia
² Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science, Novosibirsk 630090, Russia
³ Novosibirsk State University, Novosibirsk 630090, Russia
⁴ Novosibirsk State Academy of Architecture and Arts, Novosibirsk 630099, Russia
⁵ CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay 91405, France
⁶ CEA Saclay, DSM/IRFU, Gif-sur-Yvette Cedex 91191, France
⁷ Institute for Nuclear Research, Kyiv 03028, Ukraine

Abstract: For the first time Li₂MoO₄ crystals, including samples enriched with isotope molybdenum-100 (¹⁰⁰Mo), were grown by Czochralski technique at low-thermal-gradient conditions (LTG Cz), which allowed obtaining crystals of record size and quality. Dependence between growth rate, growth mechanism and crystal faceting was established. Low temperature tests of the produced Li₂MoO₄ and Li₂¹⁰⁰MoO₄ scintillating bolometers have demonstrated high performance of the detectors in terms of energy resolution and particle discrimination ability. Radioactive contamination of the Li₂MoO₄ and Li₂¹⁰⁰MoO₄ crystal scintillators produced from selected initial materials after double crystallization was tested in low background underground conditions. The achieved radiopurity level satisfies the requirements of the next generation large scale double beta decay experiments.

Key words: Low-Thermal-Gradient Czochralski technique, scintillation crystals, cryogenic bolometers, rare events search.

1. Introduction

Crystal scintillators are promising materials for detection of ionizing radiation and particles. They can be used for both practical (e.g. inspection systems, imaging) and basic research purposes. Despite large number of different compounds already approved as scintillators, there is an interest in new scintillation materials. In particular, next generation neutrinoless double beta (0ν2β) decay experiments call for crystal scintillators containing certain elements. Search for 0ν2β decay of atomic nuclei is considered as a unique way to study properties of neutrino and weak interactions, probe of physics beyond the Standard Model of particles [1-6].

Low temperature scintillating bolometers, based on crystal scintillators containing the element of interest, are promising detectors to search for 0ν2β decay thanks to the high detection efficiency and energy resolution, effective particle discrimination to suppress background [7-9]. The intensive R&D in progress of molybdenum-containing scintillators is driven by the strong interest to the isotope ¹⁰⁰Mo, which is one of the most perspectives due to the high decay energy: $Q_{2\beta} = 3034.40(17)$ keV [10], a possibility of mass scale isotopic enrichment (natural isotopic abundance $\delta = 9.744(65)\%$ [11]) and promising theoretical estimations of the decay probability (see, e.g., Ref. [6] and references therein). The CUPID Interest Group consider ¹⁰⁰Mo as one of the isotopes to realize a large scale cryogenic double...
Li$_2$MoO$_4$ Crystals Grown by Low-Thermal-Gradient Czochralski Technique

beta decay experiment with a sensitivity on the level of the inverted hierarchy of the neutrino mass pattern [12, 13].

An ideal crystal scintillator to be used as cryogenic scintillating bolometer in a high sensitivity 100Mo double beta experiment should satisfy several requirements: as high as possible concentration of molybdenum (both in wt.%, and per crystal volume), high energy resolution and particle discrimination efficiency, as low as possible bulk and surface radioactive contamination (first of all by thorium and radium), cosmogenic radionuclides activity, and neutron-gamma cross section. The technology of scintillation elements mass production should provide maximal ready-to-use scintillation elements yield and molybdenum utilization, minimal losses of costly isotopically enriched molybdenum (the production cycle should include recovery of the enriched material) [14].

Currently there are several molybdates considered as possible low temperature scintillating bolometers for high sensitivity 2β experiments. The AMoRE collaboration utilizes calcium molybdate (CaMoO$_4$) crystal scintillators [15, 16]. Despite CaMoO$_4$ is the most efficient among the molybdate scintillators, the compound contains 2β active isotope 48Ca, which can produce background in the region of interest of the AMoRE experiment (and therefore, calcium depleted in isotope 48Ca is requested for crystals production). Therefore, collaboration searches for an alternative molybdate for the final stage of the experiment. The LUMINEU collaboration has developed large volume high performance ZnMoO$_4$ cryogenic scintillating bolometers [17-19], including detectors enriched with 100Mo [20]. An advantage of ZnMoO$_4$ is the absence of heavy and radioactive elements, high concentration of molybdenum (43 wt.%) and very low level of radioactive contamination [18]. However, there are some problems in the crystal growth due to the incongruent melting of ZnMoO$_4$ compound [19]. Lithium molybdate (Li$_2$MoO$_4$) is characterized by even higher concentration of molybdenum (55 wt.%), a lower estimated contribution of cosmogenic radionuclides, and comparatively easy crystal growth process. After first studies of small size Li$_2$MoO$_4$ samples grown by conventional Czochralski technique [21, 22], excellent characteristics were demonstrated at milli-Kelvin temperature on large volume Li$_2$MoO$_4$ crystal scintillators produced by the low-thermal-gradient Czochralski technique [23]. Moreover, Li$_2$MoO$_4$ based detectors can be also used for neutron counting in low background conditions [22] and search for solar axions [24].

Li$_2$MoO$_4$ belongs to the phenakite Be$_2$(SiO$_4$) structure type with a space group $R\bar{3}$ and unit cell parameters $a = 9.590$ Å, $c = 16.659$ Å [25]. The structure consists of a three-dimensional network of corner-linked MoO$_4$ tetrahedra and two types of slightly distorted LiO$_4$ tetrahedra. The compound melts congruently at 701 °C.

Barinova et al. [26] reported the growth of Li$_2$MoO$_4$ crystal by conventional Czochralski technique. Up to three luminescence bands with the maxima at 1.98, 2.08 and 2.25 eV were detected in the emission spectra of the crystals [27]. The size of grown Li$_2$MoO$_4$ crystals was up to 100×25 mm, but they contained visual defects. Recent publication presents the results on growth of Li$_2$MoO$_4$ crystals from aqueous solution activated by low-frequency vibrations [28].

A low thermal gradient version of the Czochralski technique (LTG Cz) has been successfully used for growing scintillating crystals [29-31]. The method allows one to grow crystals of superior optical quality because of the extremely low temperature gradient of 0.05-1.0 K/cm in the melt in comparison to the conventional Czochralski technique with the temperature gradient of up to 100 K/cm. Thus, LTG Cz was successfully adopted for growing high quality bismuth germinate Bi$_4$Ge$_3$O$_{12}$ (BGO) crystals with the weight of up to 75 kg [29], CdWO$_4$ and ZnWO$_4$ crystals with record-breaking optical transition with
Li$_2$MoO$_4$ Crystals Grown by Low-Thermal-Gradient Czochralski Technique

the weight of up to 10 kg and 8 kg, respectively [30]. Application of LTG Cz allowed to obtain unique isotopically enriched crystals 106CdWO$_4$ [31, 32], 116CdWO$_4$ [31, 33] and Zn106MoO$_4$ [20, 31].

The purpose of the present work was development of large-sized Li$_2$MoO$_4$ single crystals of optical quality, suitable for application in low background cryogenic scintillating bolometers, by low thermal gradient Czochralski technique. Growth mechanisms and their influence on faceting and crystal quality have been investigated.

2. Experimental Procedures

Deeply purified molybdenum oxide (MoO$_3$) [17] and commercial high purity lithium carbonate (Li$_2$CO$_3$, 99.99%) were used for solid-state synthesis of Li$_2$MoO$_4$ according to the reaction: MoO$_3$ + Li$_2$CO$_3$ = Li$_2$MoO$_4$ + CO$_2$↑. The compound was kept for 5-10 h at a temperature of 450 °C.

Li$_2$MoO$_4$ crystals were grown in air atmosphere from the synthesized powder by LTG Cz in the platinum crucible of 70 × 130 mm. The platinum crucible was placed into a three-zone resistance furnace with low thermal conductivity bottom and top thermal insulation (Fig. 1). The crucible was covered with a platinum lid furnished with a pipe socket through which the pull rode with the crystal holder was introduced into the inner space. During the entire process the grown crystal stayed inside the crucible. The heater and control system allows one to keep the axial and radial thermal gradients within 0.05-1.0 K/cm. Visual control is impossible in this growth system which stipulates the use of weighing control at all stages of the growing process including the seeding.

In different growth processes growth rates varied from 0.3 mm/h to 2.5 mm/h. Rotation velocity was 3 rounds per minute, duration of the growth process was from 10 to 12 days. Li$_2^{100}$MoO$_4$ crystals enriched in the isotope 100Mo were grown.

The morphology of crystallization front was studied visually and by using diffractometer DRON-3, Carl Zeiss Axioskop 40 microscope in polarized reflected light, MIRA3 TESCAN microscope in reverse electrons. Differential thermal analysis of the grown crystals was carried out with the help of derivatograph NETZSCH STA 449F1 STA449F1A-0161-M.

Quantitative chemical analysis of Li$_2$MoO$_4$ crystals was carried out at Analytic Laboratory at the NIIC SB RAS (Novosibirsk, Russia). Bolometric tests were carried out at the Centre de Sciences Nucléaires et de Sciences de la Matière (Orsay, France).

3. Results and Discussions

Growth mechanisms and crystal morphology. The quality of crystals grown at different growth rates was studied and compared.

At the growth rate of 1 mm/hour and higher both normal and tangential growth mechanisms coexisted. In this case crystallization front consisted of numerous small faceted and rounded areas. The quality of the crystals was relatively low due to the appearance and

Fig. 1 Scheme of the furnace for low thermal gradient version of the Czochralski technique.
increasing concentration of visually distinguishable inclusions during the growth run. Thus, the lower part of the crystal became cloudy (Fig. 2a). This may be explained by the capture of inclusions and formation of defects at the boundaries between the faceted and rounded areas on the front. The size of facets could reach 0.3-0.4 cm2. Facets belonging to rhombohedron $\{101\}$, hexagonal prism $\{110\}$ and pinacoid $\{001\}$ simple forms were present. Reflection angles θ determined for the facets with the use of diffractometer DRON-3 corresponded to the X-ray data [25]. The steps and growth pyramids formed a complicated relief on the crystallization front with large number of benches and pits (Figs. 2b and 2c). At the growth rate below 1 mm/hour normal growth mechanism was realized. The crystallization front was entirely rounded and the quality of the crystals was much higher (Fig. 3).

During the study of morphogenesis of crystallization front the value of Jackson’s criterion for Li$_2$MoO$_4$ was calculated based on measured values of heat of fusion and melting temperature (34 kJ/mol and 974 K, respectively). Calculated value of Jackson’s criterion was 4.2.

Previously LTG Cz was used for growing crystals with a high value of Jackson’s criterion, e.g. Bi$_4$Ge$_3$O$_{12}$ (16), ZnWO$_4$ (9.1), CdWO$_4$ (9.6). As these crystals tend to be front-faceted, crystallization was carried out at a high speed in order to exclude the formation of rounded parts growing according to normal mechanism and to produce a fully faceted front [34]. Thus, crystallization front of Bi$_4$Ge$_3$O$_{12}$ crystals, grown at a rate of 3-12 mm/h, was formed by three large facets belonging to $\{112\}$ simple form; whereas crystallization front of CdWO$_4$ grown at a rate of 3-12 mm/h—by one pinacoid facet $\{010\}$. This scheme cannot be realized with lithium molybdate due to the presence of the different facet families with similar values of reticular density which leads to a simultaneous growth of divergent facets. The relatively low value of Jackson criteria for Li$_2$MoO$_3$ evidences strengthening of atomic roughness and tendency to the normal growth mechanism. To grow Li$_2$MoO$_4$ crystals we stepped away from tangential growth mechanism and fully faceted front to normal growth mechanism and fully rounded front. In this way, Li$_2$MoO$_4$ single crystals of optical quality without any visual defects were obtained.

Thus, the preferable conditions for Li$_2$MoO$_4$ growth are those which lead to the formation of smooth, rounded crystallization front: low growth rate (1 mm/hour or lower), rotation velocity of 3 rounds per minute with slight changes of the temperature distribution in the zones to maintain equally convex front during the entire growth process.

Crystal size. In order to optimize the process of bolometer production, the length of grown Li$_2$MoO$_4$ crystals was increased so that two scintillation elements could be cut out from one crystal boule. Cylinder part of such crystals should be 96-100 mm. The problem we encountered while prolonging the growth process was the tendency of crystallization front to extend into the melt. To avoid this effect, the bottom and top heat zones were additionally heated.

Fig. 2 Li$_2$MoO$_4$ crystal grown at a rate of 1 mm/hour (a) and typical view of crystallization front (b); SEM image of rhombohedron surface in reverse electrons (MIRA3 TESCAN) (c).
during the second part of the growth process. The obtained Li$_2$MoO$_4$ crystals were of optical quality up to 100 mm length and 55 mm in diameter (Fig. 4). Crystal yield was 80-85 wt.%. The losses of isotopically enriched molybdenum during the crystal growth and cutting out of the scintillation elements were less than 1-2%.

Crystal purity. Potassium is a typical contaminant of Li$_2$MoO$_4$ due to the chemical affinity between lithium and potassium. The potassium concentration in grown crystals was estimated to be on the level of 4×10^{-4} wt.% which calls for additional purification of lithium carbonate used for lithium molybdate synthesis.

Distribution coefficient of potassium in Li$_2$MoO$_4$ was found to be below 1 which gave the opportunity to reduce potassium concentration in crystals by recrystallization. For this purpose, two Li$_2$MoO$_4$ crystals were grown from the original charge consisting of stoichiometric mix of Li$_2$CO$_3$ and MoO$_3$ powders. The upper parts of the crystals (expected to be less contaminated by potassium) were utilized to produce the final Li$_2$MoO$_4$ crystal. After that their upper and, correspondingly, less contaminated parts were taken and melted in platinum crucible and next generation Li$_2$MoO$_4$ crystal was grown from that melt. No potassium contamination was observed in the recrystallized crystal on the level of detection limit 1×10^{-5} wt.%.

Characterization of Li$_2$MoO$_4$ based cryogenic scintillating bolometers. Several samples of Li$_2$MoO$_4$ crystal scintillators including the ones produced from enriched with 100Mo were tested as cryogenic scintillating bolometers at milli-Kelvin temperature [35]. The detectors showed high performance in terms
of energy resolution (full width at the half of maximum, FWHM) 4 keV – 7 keV for gamma quanta of 208Tl with energy 2,615 keV, and excellent particle discrimination ability ($DP = 8 – 19$) between beta-particles (gamma-quanta) and alpha-particles above energy 2.5 MeV. The last characteristic can be expressed through average values (widths) of the alpha or beta/gamma distributions $\mu(\sigma)$ as following:

$$DP = \left(\mu_{\gamma(\beta)} - \mu_\alpha\right)/\sqrt{\sigma_{\gamma(\beta)}^2 + \sigma_\alpha^2}$$

The achieved energy resolution and particle discrimination are comparable to the characteristic of CdWO$_4$ scintillating bolometers [36] and substantially higher than that of ZnSe detectors [37].

Radioactive contamination of the Li$_2$MoO$_4$ and Li$_2^{100}$MoO$_4$ crystal scintillators was investigated in the Gran Sasso (Italy) and Modane (France) underground laboratories [35]. The tests have shown very high level of the crystals radiopurity. In particular, only limits were set on activity of the most harmful for the $0\nu2\beta$ experiments radionuclides 226Ra and 228Th on the level of $< (0.007 – 0.037)$ mBq/kg and $< (0.006 – 0.021)$ mBq/kg, respectively. The activity of 40K was not observed on the level of $< (2 – 12)$ mBq/kg. However, a higher concentration of 40K (62 mBq/kg) and 226Ra (0.13 mBq/kg) was detected in the Li$_2$MoO$_4$ samples produced from the Li$_2$CO$_3$ powder with higher activity of the radionuclides (measured by low background HPGe gamma spectrometry). Therefore, the issue of potassium and radium contamination should be addressed in the further development of Li$_2$MoO$_4$ crystals. An R&D is in progress to develop methods of lithium carbonate purification and screening aiming to decrease potassium and radium contamination. A clear indication of potassium and radium segregation was observed by comparison of the crystal samples produced by single and double crystallization. The radiopurity level of the crystals produced from the selected lithium carbonate by double crystallization is high enough to realize a pilot $0\nu2\beta$ experiment in preparation with ~ 7 kg of isotopically enriched molybdenum.

4. Conclusions

Li$_2$MoO$_4$ growth mechanisms, their dependence from growth rate and influence on crystal faceting were studied. At the growth rate 1 mm/hour and higher mixed growth mechanism is realized, while below 1 mm/hour normal growth mechanism is realized. High quality Li$_2$MoO$_4$ crystals were obtained in the processes in which normal growth mechanism was implemented. Large-size $\phi 55 \times 100$ mm2 Li$_2$MoO$_4$ and enriched Li$_2^{100}$MoO$_4$ crystals of optical quality were grown. Low temperature tests of Li$_2$MoO$_4$ and Li$_2^{100}$MoO$_4$ crystals have demonstrated a high performance of the scintillating bolometers based on the produced scintillation elements in terms of energy resolution and particle discrimination ability. The radiopurity level of the produced Li$_2$MoO$_4$ and Li$_2^{100}$MoO$_4$ scintillation elements is very high on the level of $< (0.007 – 0.037)$ mBq/kg and $< (0.006 – 0.021)$ mBq/kg of 226Ra and 228Th, respectively. Altogether the tests have demonstrated that Li$_2$MoO$_4$ is a promising material for the next generation large scale double beta-decay experiments.

References

