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Abstract: This article investigates quantum gravity through a new approach based on quantization of spacetime and Lyra geometry. 
Singularity functions are applied to the study, whose main focus is to investigate the physics in the surroundings of supermassive 
bodies. Present work is a continuation of the research program on quantum gravity and time machines established by the author in a 
previous publication. The physical and geometrical features of the model are discussed. 
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Nomenclature 

G-Closure: A bubble of compressed spacetime 

...D : Covariant derivative 

Greek letters 

 : Lyra’s gauge function 

 : Levi-Civita-Christofell connection 

† 
 : Lyra’s connection 

 : Displacement vector field 

g : Tensor metric 

1. Introduction 

In recent times, inspired by works of Rovelli [1-5] 

and Baez [6], and by some old profound considerations 

from Butterfield and Isham [7], I developed a new 

framework for quantum gravity in which, instead of 

thinking about gravity as consisting of supersymmetric 

particles, I imagined a quantum structure of the 

spacetime itself, meeting the idea that general relativity 

is, first of all, a theory about the geometry of spacetime, 

and the gravitational field a representation of the 

deformations of that geometry. For this purpose, I have 

adopted an analytical model of the nature of the 

geodesic paths in a gravitational field, defining the 
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invariant element of expansion or contraction of the 

Universe in commoving coordinates as the elementary 

“grumo” of spacetime. From this new perspective, I 

focused, in particular, on investigating the 

deformations that would lead time effects only, since 

time, as discussed previously [8], is the predominant 

dimension in the gravitational evolution of the 

heavenly systems. The suggested “granular” structure 

of the spacetime, that is, the size and type of the 

elementary “quanta of spacetime”, was treated 

mathematically with the aid of the so-called 

“singularity functions” [8]. 

2. The Quantum Spacetime Phenomenology 

The phenomenological model I chose to develop the 

construct of quantum spacetime was the interaction of 

two supermassive bodies with strains conflicting with 

one another. I considered singularities caused by 

spherical pressure from the outside in, not caused by a 

central high density; thus, unlike a hypothetical single 

central source, we have now several virtual external 

sources for each central singularity. Theoretically, such 

“bubbles” of compression can be generated by 

gravitational pressure caused by supermassive bodies 

close to each other like two black holes or two pulsars 

in close binary systems. Since bodies are not perfectly 

rigid, when two bodies interact gravitationally with one 
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another their facing surfaces are more distorted 

because they are attracted more strongly than the 

opposite sides. But, the gravitational attraction between 

the bodies also tends to squeeze or compress them as 

they pull one another toward their center points; so, the 

strong attraction between massive bodies leads to a 

compression of space contained among them. This 

“bubble” of compressed space I called “G-closure” [8]. 

Therefore, gravitational “bubbles” of spacetime 

shrinkage within an expanding universe are plausible, 

featuring local inhomogeneities. We can speculate on 

the spacetime behavior in such physical conditions 

from the study of those supermassive binary systems. 

3. The Essential Lyra Geometry 

Many works appeared on cosmology applying Lyra 

geometry from authors as Reddy and Innaiah [9], 

Reddy and Venkateswarlu [10], both in the eighties, 

and more recently Shchigolev [11]. Shchigolev even 

says that “[...] Lyra’s geometry can be considered as 

the candidate for modification of the contemporary 

cosmological models, the necessity of which is almost 

generally recognized” [11]. 

To fully understand the meaning of Lyra geometry, 

it is necessary to establish some preliminaries in GR 

(general relativity). In the context of GR, if we think 

about rigid motions in spacetime, we see that these 

motions are in fact gauge transformations, as it can be 

confirmed by the parallel transport of a vector given 

from Christoffel connection, say 

dv v dv   
    

or 
.dv v dv 

     

From here, once that the scalar product of two 

vectors at the same point is 

. .u v g u v v v g v v   
     

 2
,  v v v   

we have 

 2
,d v d v v dv v v dv  

      

0v dv v v v dv     
        . 

Now, paying attention to some notation adjustments, 

we can express global spacetime transformations as 

x x a   
               (1) 

which corresponds to Lorenz plus translations. 

Accordingly previous explanation, local 

implementation, however, requires at each point of 

spacetime 

( ) ( )x x x a x   
             (2) 

that is, 

( ) .dx x dx  
             (3) 

The invariance of the geodesic arc element (or the 

coordinate invariance of derivatives) is gained by the 

introduction of a new metric tensor field 

2 ( ) ( ) ,ds g x dx dx g x dx dx   
      

which transforms in accordance to 

1 1( ) ( ) ( ) ( ).g x x g x x 
            (4) 

To preserve the homogeneity of tensor 

transformations, the covariant derivative must obey 

.D A D A D A    
            (5) 

This condition may be achieved by 

,D A A A   
              (6) 

with the connection 

1
.

2
g g g g 

               (7) 

Despite all this, the gauge of gravitation is entirely 

based on the geometric concept of the gravitational 

field, which derives directly from the spacetime 

structure, unlike the other physical fields. 

Now, it is important to note that much of the 

essential texts on gauge theory remained in German for 

a long time, and some are still hardly found in 

translated versions, a fact that has impeded the full 

access to many documents by the majority of the 

scientific community not familiarized with the 
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language [12]. For this reason, and also because of its 

distinct theoretical structure, unfortunately Lyra's 

gauge approach is not commonly treated in the general 

context of gauge theories, but the cogency of the 

insights contained in it cannot be ignored at all, 

especially in modern quantum cosmology. 

As Lyra [13] himself said, “[...] Es besteht eine so 

nahe innere Verwandtschaft des hier gegebenen 

Aufbaus der Infinitesimalgeometrie mit demjenigen 

Weyls aus dem Jahre 1918, dass man ebensogut von 

einer Modifikation der Weylschen Geometrie sprechen 

könnte” (There is such a close inner relationship of the 

infinitesimal structure given here with that from Weyl 

(1918) that one could just speak of a modification of 

Weyl’s geometry) 1 . Thus, Lyra’s geometry is a 

generalization of Riemannian geometry—initially 

taken in a manifold not endowed of a metric—with a 

positive definite function, the scalar field χ(xk) for scale 

changes, in which the reference system is defined not 

only by the coordinates but also by including that scalar 

field, that is, the gauge function χ(xk) [13]2, so that the 

Levi-Civita-Christofell connection is χ-1-gauged and 

added of a negative term referring to the vector 

displacement of a given parallel transport between two 

neighboring points. Therefore, a change in reference 

system is in fact a change of coordinates and a gauge 

transformation, all at once. 

A tensor metric gμν is subsequently introduced, and 

the new asymmetric connection is given by 

 1† 1
,

2
g    

                 (8) 

where 
† 

 is symmetric in only the lower indices, 
† 

 is the usual connection 3 , and  is the 
                                                           
1 Translated from German by the author. 
2 In words from Lyra: “[...] Dabei wird der Eichbegriff nicht 
mehr als Festlegung von Längeneinheiten verstanden, sondern 
schon im strukturlosen Raum als ein mit dem 
Koordinatensystem gleichberechtigter Bestandteil des 
Bezugssystems eingeführt” (Here, the calibration term is no 
longer understood as establishing length units, but introduced 
already in the structureless space on an equal footing with the 
coordinate system part of the reference system). Translated 
from German by the author.  
3 Whenever possible, it is desirable to reflect upon the precise 
meaning of the objects under study. Weaving formal 

displacement vector field. The geodetic arc element in 

Lyra’s manifold has the form 

2 2 ,ds g dx dx 
          (9) 

and the change from a reference frame  , ix  to 

 , ix   is obtained doing 

   , ,  .k i i kx x x x      (10) 

It is important to add that the Jacobian obeys 

0
i

k

x

x





, 

and 

0.






 

Lyra’s geometry has the fundamental property that 

the length of a vector in parallel transport does not 

change, in contrast with Weyl’s geometry.  

4. The Quantum Spacetime in Lyra’s 
Geometry 

The phenomenological framework I proposed aims 

to explain some exotic effects in the interaction of two 

supermassive bodies. It considers an approach on 

quantum gravity in which it is assumed—having in 

mind that any region in space is continually being 

expanded (or compressed), so that there are no rigid 

structures at all—a metric in singularity functions, 

making it possible to analyze any infinitesimal timelike 

                                                                                             
considerations on the structure of Riemannian manifolds, 
Weitzenböck [14] summarized his conclusions by saying the 

following: “[...] die Functionen 

 definieren die 

<<infinitesimale Parallelverschiebung” der Vektoren (und 
damit auch die von Tensoren höherer Stufe), oder auch: die 

Funktionen 

 definieren den “affinen Zusammenhang>> 

der Mannigfaltigkeit” ([...] function 

 defines the 

“infinitesimal parallel displacement” of the vectors (and thus 

also of tensors of higher order), or else function 

  defines 

the “affine relation” of the manifoldness). Translated from 
German by the author. Thus, Weitzenböck understands 

function 

  as the analytical representation of the structural 

geometrical essence of a Riemannian manifold, ultimately its 
“holonomyness” rephrased in operational description encoded 
by an algorithm of parallel transport. 
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element of a geodesic in a gravitational singularity. In 

such approach, there is no vanishing of space 

components of the metric tensor, although the 

participation of space in the geodesic path is annulled 

simply by choosing a value of the spacelike x-variable 

for the infinitesimal element in Macauley 

kets,
2

d x


 , with the restriction x  [8]. 

Accordingly, the space still exists in the singularity, 

however, as it was “frozen”. This means that the 

geometry of spacetime fluctuates (or undergoes 

excitations) over “non-space”, apart from the trivial 

case of the 0g   solution [8].  

From the above scenario, since no effective 

displacement occurs, field becomes static in space, so 

that the connection 

 00 0 0 0 0 00

1

2
g g g g 

         (11) 

reduces to 

 00 0 0 0 0

1
,

2
g g g 

          (12) 

in which 

0 0
0 0

0 0

;
g g

g
t x

 
  

 
  

   
 

00 00
00 .

g g
g

xx


 


 
  

  
 

The quantum spacetime was matched with quantum 

Riemannian metric in order to obtain the correlation 

function 

2

0
0 | 0 .g d x d x d x  

        (13) 

In short, we can only predict the expectation value 

of the rate in which the invariant element evolves in 

time mode, once a G-closure is manifested. As already 

emphasized, such considerations were made matching 

quantum spacetime and quantum Riemannian metric 

within a unique geometric framework as a way to 

quantize not the gravitational field, but the spacetime 

on its own, establishing compliance between quantum 

gravity and Einstein’s general relativity.  

Conducting formal developments supported by 

some considerations of Woodard [15, 16], Rovelli [2, 

4], and from the general theory of singularity functions, 

I concluded that, given the energy density, the 

expectation value of the rate at which the invariant 

element evolves only in time mode, within a G-closure 

[8], in a locally flat background, is described by 

  2 20 | 0 1 ( )g d x d x C u du
 

          

0

2

2
2

3 1 ( )
1

8 2 1
,

( )t

u dA u
du

Gu A u du  

  
       

(13-a) 

since  

0

223 1 ( )
1 1 ( ),

8 2 1 ( )t

H u dA u
C u

G A u du  

 
    

 (13-b) 

where u is a time function that corresponds to 1/H for 

time coordinate equal to 0 and to 0 for time coordinate 

equal to ∞, A(u) and C(u) are functions freely 

evaluated non-perturbatively from the retarded 

Green’s functions of the massless minimally coupled 

and conformally coupled scalars. If we take the 

approach from loop quantum gravity, maintaining 

conditions of isotropy and homogeneity previously 

assumed, Friedmann equation becomes 

0

0

2
8

1 ,
3

t

t
Pl

R G

R





 





 
           


    (13-c) 

where 96 3~ 10 /Pl Kg m is the Planck density [3, 4]. 

Although it has been produced a certain number of 

works applying Lyra’s geometry, very little 

effectively was gained so far, except, perhaps, the 

interpretation related to the cosmological constant as I 

shall discuss below. Nevertheless, the search for a 

suitable physics to describe gravitational singularities 

led me to a complex geometry resulting from a 

combination of Lyra’s geometry with the geometry of 

singularity functions described in Ref. [8]. Using 

Lyra’s geometry, the gauged connection gets the 

general form of Eq. (8), which restricted to timelike 

singularity coordinates gives 
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   1
00 0 0 0

†
0 0 0 0 0

1 1
,

2 2
g g g   

             (14) 

with 

0

0
0 ,t      4 

,x 


       

and 

0x     

for x  . 

The argument that the indices simplify the 

formalism is really a scam. Therefore, unlike the 

literature in general, I shall make a careful explanation 

of the meaning of these expressions. As stated, 

 is 

symmetric only in lower indices, which means that 
“ ” does not commute, in general, with indices “ ” 

and “  ”, appearing as superscript symbolizing 

contravariance, i.e., infinitesimal displacement. Also, 

in accordance with previous deductions that led to the 

geodesic equation in singularity functions [8], indices 
“ ” and “ ” were taken as time-labels while “ ” 

and “  ” became space-labels (“  ” replaces “ ” to 

characterize the metric tensor component as a function 

of time and space in partial derivatives, but this is 

done without any loss of generality). So, according to 

the second term in the right-hand side of Eq. (14), 

those infinitesimal displacements run over time, on 

the temporal component of the vector field, in the 

spatial directions “ ” of this field. However, as there 

is no spatial displacement (see properties of 

singularity functions, taking care not to confuse 

“spatial direction” with “spatial displacement”), the 

spatial components of the displacement vector field 

cancel out, thus leaving Eq. (14).  

                                                           
4  In my previous work [8], the adoption of singularity 
functions aimed to allow disregard the participation of space in 
the calculation of the invariant commoving timelike element, 
with no need to guess lack of space. Thus, timelike geodesics 
are determined by application of the properties of Macauley 
kets on their space parts, since the usual differential coordinates 
were replaced by differentials of intervals. Thus, 

   
0 1 2 3
, , , ,0,0,0t x x x          

for .x   

The parallel transfer of a vector ω in Lyra’s 

geometry is given by 

† 1
.

2
dx    

           
 

 (15) 

If one assumes the natural gauge ( 1  ), the 

vector length is not changed under parallel transfer. 
In its general form, the geodesic is now described 

by 

2
†

2

0;
d xd x d x

d d d
 



   


  

 
    (16) 

 
2

1
2

1

2

d x
g

d
   
     


     


        

0;
d x d x

d d
 

 


 

 
   

2

2

d xd x d x

d d d
 



 
  

 
   

  0.
2

d x d x
g

d d
   

    

      
 

 
   

Lastly, for timelike geodesics in singularity 

representation, 

2

0 0
002

d x d x d x

d d d


  
  
  

  

  0 0
0 0 0 0 0.

2

d x d x

d d
       

 
 

    (17) 

An obvious advantage of Lyra’s geometry is that 

under the new connection a vector length is 

unchanged after a parallel transfer, which is physically 

appropriate, especially in the case of displacements 

only in time, whose comprehension is far from trivial. 

Also, as yet we’ll see below, Lyra’s geometry has 

raised new interpretations to the cosmological 

constant from Einstein's equations. 

We consider, for instance, the FLRW background. 

As we know, Einstein’s field equation in Lyra 

geometry is 
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3 3
,

2 4
G T 

              (18) 

which gives 

0 0
00 0 00 0 00

3 3
;

2 4
G T          

1 1
11 1 11 1 11

3 3
;

2 4
G T          

2 2
22 2 22 2 22

3 3
;

2 4
G T          

3 3
33 3 33 3 33

3 3
.

2 4
G T          

Restricted to timelike geodesics, as in the quantum 

theory of spacetime presented in Ref. [8], we stay with 

0 0
00 0 00 0 00

3 3
.

2 4
G T          (19) 

From this, the Friedmann-like field equation is 

written as 

 2
00 00 00

3
,

4
G T            (20) 

or 

 2
00 00 00

3
.

4
G T             (21) 

Since we have 

2

00 2

3
3 ,

k R
G

R R

 
    

 


 

then 

0 0

2

2
2

3 3
3 ,

4 t t

R k

R R    

 
   

 


 

 
0 0

2

2
2

1 8
.

4 3t t

R k G

R R  
  

 
   

 


 (22) 

Confronting this equation with Eq. (13-c), we see 

that it is valid when the matter in the Universe has a 

density negligible compared to the Planck density (the 

parenthesis in Eq. (13-c) is close to 1, and correction is 

insignificant). All the letters designate the well known 

quantities of GR and cosmology, unless otherwise 

indicated. Nowadays, many authors understand the 

constant displacement vector field in Lyra formalism 

with the same physical role as the cosmological 

constant in the standard GR. In this sense, we can say 

that the cosmological constant naturally results from 

the introduction of the Lyra gauge. Therefore, it is 

expected the new gauge could reflect the 

characteristics of the cosmological constant term, that 

is 

1 2 3
1 2 3.                (23) 

5. Discussion and Conclusion 

Timelike geodesics are treated with a bit of common 

sense even if one understands that it is in a conceptual 

level very far from a naive physical framework. This is 

so because time in GR is not the time of clocks but an 

evolutionary variable, and it is difficult to us to discard 

old archetypes like rules and clocks.  

Whenever we seek a new physics to give account for 

an almost impenetrable phenomenon we try to find the 

invariants of the theory, the referents that make 

possible to get some knowledge about, and this search 

unwittingly drags us again to the classical measuring 

tools for thought experiments. From my point of view, 

the most interesting thing about the introduction of 

Lyra’s gauge is the feasibility of the description of a 

notional parallel transfer in time without changing the 

duration, regardless of the spatial direction. This is an 

invariant useful to describe one of the quantum faces of 

gravity and goes far beyond common sense. 

As we have seen briefly, physicists try to interpret 

the real meaning of Lyra’s extra-displacement terms in 

Einstein’s equations giving to them the role of 

cosmological constant. Nevertheless, in my approach 

we have to return to Lyra’s geometry discussing what 

is a time parallel transfer of a time interval in a certain 

direction. I remember that space is “frozen” in the 

singularity representation of a timelike geodesic; there 

is no space displacement. Therefore, in the natural 

gauge a time parallel transfer of a time interval is in fact 

a projection of this time interval in one space direction 

targeting another virtual geodesic path in which space 
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coordinates would be also treated by singularity 

functions. This is a way to say that, under the same 

conditions, we have the same behavior of nature. In my 

work, these conditions feature the so-called G-closure. 

Importantly, this geometric review in no way precludes 

the representation of the cosmological constant; rather, 

it emphasizes the invariance of the duration under 

parallel transport, thus characterizing a constancy of 

nature. 

Lastly, comparing quantum spacetime with quantum 

Riemannian metric to establish the conditions for 

further precise evaluation of the functions A(u) and C(u) 

in present model (expressions 13-a and 13-b), we in 

fact are asking what functions A(u) and C(u) relate 

quantum spacetime with quantum Riemannian metric, 

measuring the spacetime shrinkage rate. So, we can say 

that the geometry of spacetime fluctuates and this is the 

same to say that Riemannian metric fluctuates as the 

physical state of spacetime itself. 
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