
Computer Technology and Application 7 (2016) 73-82

doi: 10.17265/1934-7332/2016.02.002

Neural Network Inversion for Multilayer Quaternion

Neural Networks

Takehiko Ogawa

Department of Electronics and Computer Systems, Faculty of Engineering, Takushoku University, Tokyo 193-0985, Japan

Abstract: Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion

method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a

higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural

network models have been proposed. Using the quaternion, we have the advantage of expressing 3D (three-dimensional) object

attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the

quaternion. In this paper, we extend the neural network inversion method to the quaternion domain. Further, we provide the results of

the computer experiments to demonstrate the process and effectiveness of our method.

Key words: Inverse problems, neural network inversion, quaternion, inverse mapping, inverse kinematics.

1. Introduction

Inverse problems determine the inner mechanisms

or causes of an observed phenomenon. The solutions

to inverse problems have been required in various

engineering fields [1, 2]. The network inversion

method is a neural network-based solution [3] that has

been studied in order to apply the solution to the

inverse problems of image restoration, inverse

kinematics, and so on [4-6].

Recently, artificial neural network models and their

training methods for handling high-dimensional

numbers that include complex numbers or quaternions

have been proposed [7-11]. High dimensional neural

networks are able to learn and estimate the

relationship between high dimension inputs and

outputs. Given that the quaternions easily express the

geometrical relationships in the 3D

(three-dimensional) space, they are used in the fields

of computer graphics, robot control, and so on.

Inverse problems whose causes and results extend

to the high dimensional domain can arise in various

engineering fields. For example, these problems are

Corresponding author: Takehiko Ogawa, Dr. (Eng.),

research field: artificial neural networks and their application.

included in the image restoration of the frequency

domain, the inverse estimation of the attitude change

of objects in the 3D space, and more. The adaptive

solution of learning with neural networks to solve

inverse problems must be extended to the high

dimensional domain. Presently, an extension to the

complex domain of network inversion has been

proposed [12, 13].

In this paper, we propose an extension of the neural

network inversion method to the quaternion for

solving inverse problems in the quaternion domain.

We performed simulations of the inverse mapping

problem in the 3D space, and applied a procedure of

the proposed quaternion network inversion method to

the inverse kinematics problem of robot arms.

Moreover, we performed a comparison with a usual

real-value network inversion to demonstrate the

effectiveness of the proposed quaternion network

inversion method.

The rest of this paper is organized as follows:

Section 2 discusses inverse problems and neural

networks; Section 3 introduces QNNs (quaternion

neural networks); Section 4 presents computer

experiments; Section 5 provides our conclusions.

D
DAVID PUBLISHING

Neural Network Inversion for Multilayer Quaternion Neural Networks

74

2. Inverse Problems and Neural Networks

An inverse problem is an estimation of the cause or

internal mechanism that produces a given

phenomenon from a set of observed phenomena. A

direct problem leads to the results from a cause; in

contrast, an inverse problem finds a cause from the

results, or estimates an input from the output. Inverse

problems have the disadvantage that the existence,

uniqueness, and stability of a solution are not

guaranteed in general; for this reason, inverse

problems are referred to as ill-posed inverse problems

[1]. Though ill-posed inverse problems are often

referred to simply as inverse problems, in this paper,

we refer to the inverse problem as such that which

estimates a cause from the result, regardless of its

ill-posedness.

2.1 Network Inversion

A multilayer neural network usually learns an

input-output relationship from the direction of the

input to the output. In addition, it estimates the output

from the given input using the learned relationship in

the forward direction. Therefore, such neural network

is suitable for a solution of direct problems. In general,

the error back-propagation method based on the

gradient method is used for learning.

Network inversion is a method to estimate the input

from the output using a learned network [3].

Essentially, by repeating modifications based on the

gradient method, the input is estimated from the

output. In an actual case of solving the inverse

problem by a network inversion, a two-step process is

utilized, where forward modeling occurs during the

learning phase (the first step), and inverse estimation

occurs during the inverse use of the forward model

(the second step). In the learning phase, forward

modeling is performed by the error back-propagation

method using tutorial data, similar to the usual

learning of the multi-layer neural network. In the

inverse estimation phase, the inverse problem is

solved using the forward model to estimate the input

from the output of the network.

The principle of inverse estimation by network

inversion is an iterative minimization of the output

error based on the gradient method, similar to the

principle of learning by the error back-propagation

method. In the error back-propagation method, the

output error is assumed to be caused by errors in the

weights; to correct the weights, the error is minimized.

In the inverse estimation method using network

inversion, it is assumed that the weights obtained by

learning are correct, and the input is to be corrected by

minimizing the output errors.

In the learning phase of the usual error

back-propagation method, we feed the tutorial input x,

calculate the output y, provide the tutorial output y',

and calculate the output error E. Then, the weights w

are corrected to minimize the output error E as

w

E
ww t

oldnew

(1)

where t is the learning coefficient. The input/output

relationship is composed in the multilayer networks

that completed the learning. In other words, the output

error is assumed to be caused by an error of the weight

in the learning.

In the inverse estimation phase, we can correct the

input x instead of the weights w to minimize the

output error E, based on the duality of the weights w

and the input x. By fixing the weights obtained in the

learning, the input x is iteratively updated from the

provided output y', based on the gradient method, as

x

E
xx e

oldnew

(2)

where e is the estimation coefficient. When the output

error is substantially reduced by iterative

modifications of the input, we obtain the input that

corresponds to the given output. The learned

relationship is inversely used in the network inversion.

In other words, the output error is assumed to be

caused by an error of the input in the inverse

estimation. This is the principle of inverse estimation

of the network inversion.

Neural Network Inversion for Multilayer Quaternion Neural Networks

75

3. QNNs (Quaternion Neural Networks)

Quaternion, which is one of the high dimensional

numbers, was devised by Refs. [14, 15]. The

quaternion is a high dimensional number with a real

part and three imaginary parts, and is a system that

expresses the characteristics of the 3D space

efficiently. Therefore, the quaternion is known widely,

because it is used for the attitude control satellite, the

imaging of the solid model in computer graphics, and

more [16, 17].

Complex-valued network inversion [12] uses a

multilayer neural network that includes complex

weights and complex neurons. In this method, the

complex-valued neural network estimates a complex

input from a complex output using a trained network.

It is an extension of the input correction principle of a

usual network inversion to the complex domain.

The quaternion is expressed as x = x1 + ix2 + jx3 +

kx4, where i, j, and k are three imaginary units. The

numbers x1, x2, x3, and x4, which are real numbers,

represent each component of the quaternion. In

addition, the imaginary units satisfy the relationships:

i
2
 = j

2
 = k

2
 = ijk = 1, ij = –ji = k, jk = –kj = i, and ki =

–ik = j. Quaternions satisfy the associative law of

multiplication and the distributive law of addition.

However, quaternions do not satisfy the commutative

law of multiplication. In particular, the quaternion

whose real part is zero is called a pure imaginary

quaternion, and it is expressed as x = ix2 + jx3 + kx4.

Various neural network models that were extended

to the quaternion, such as single neuron, multilayered,

and recurrent type have been proposed and studied

[9-11]. Using quaternion neurons and weights,

multilayer QNNs can learn the relationship between

inputs and outputs that is extended to the quaternion.

In this paper, we consider a solution to the inverse

problem using the multilayer QNN.

3.1 Quaternion Network Inversion

In this paper, we use a multi-layer neural network

that extends to the quaternion input, output, and

weights. We propose a quaternion network inversion

to solve an inverse problem using a network that has

completed forward learning. This method estimates

the quaternion input that corresponds to the given

quaternion output using a trained multilayer QNN.

The input modification principle of this method is an

extension of the quaternion area of the network

inversion. In addition, we use a neuron to apply the

sigmoid function independently to each part of the

quaternion input. That is, we consider the three-layer

network that uses the sigmoid function expressed as

 4321 skfsjfsifsf sf
,

u

u

e

e
uf

1

1
 (3)

for the hidden layer and the output layer, where s = s1

+ is2 + js3 + ks4 represents the weighted sum of the

inputs. The schematic view of the network is shown in

Fig. 1.

In the learning phase, the network iteratively

updates the quaternion weights from a given

quaternion learning input and output data, based on

the error back-propagation method that has been

extended to the quaternion. The output error function

is defined as

n

nrnr

r

nrnrE ydyd
2

1 (4)

where dnr and ynr are the quaternion learning output

and the quaternion network output that are provided to

the r-th element of the n-th training data, respectively.

In addition, the error signal nr from the r-th output

element and the error signal nq from the q-th hidden

element can be calculated as

 ,.. nrnrnrnrnr yyydδ 11

 ,..
r

qrnrnqnqnq wδvvδ 11 (5)

where vnq and wqr are the output from q-th hidden

element of the n-th training data and the weight

from the q-th hidden element to the r-th output

element, respectively. We represent the multiplication

of each element of the quaternion by the symbol “ . ”.

Neural Network Inversion for Multilayer Quaternion Neural Networks

76

Fig. 1 Example of a three-layer QNN.

Furthermore, we express the quaternion whose every

element is one by the symbol “1”. Based on the error

signals, the weight wqr between the hidden and the

output elements, and the weight wpq between the input

and the hidden elements are updated by

,
n

nqnrt

old

qr

new

qr vδww

,
n

npnqt

old

pq

new

pq xδww

(6)

where t is the learning coefficient. By repeating this

updating procedure, the quaternion weights

distribution to compose the input-output relationship

of the given learning data is obtained.

In the inverse estimation phase, we provide a

tentative quaternion input while fixing the relationship

obtained by learning. Then, we calculate the output

error function from the output obtained from the

quaternion, which is defined as

 ,
2

1
rr

r

rrE ydyd (7)

where dr and yr are the quaternion learning output and

the quaternion network output that are provided to the

r-th element of test data, respectively. The error signal

r from r-th output element and the error signal q

from the q-th hidden element can be calculated as

 ,.. rrrrr yyydδ 11

 ,..
r

qrrqqq wδvvδ 11

 (8)

where vq and wqr are the output from the q-th hidden

element and the weight from the q-th hidden element

to the r-th output element, respectively. The amount

of input correction p for the p-th input element is

expressed as

,
q

pqqp wδδ (9)

where wpq is the weight from the p-th input element to

the q-th hidden element. Based on the amount of input

correction, the input xp is updated by

,pe

old

p

new

p δxx (10)

where e is the coefficient of input correction. By

repeating this updating procedure, we can estimate the

quaternion input from the given quaternion output,

using the quaternions weight distribution obtained in

the learning phase.

4. Computer Experiments

In this study, we handle the inverse estimation

problem of the 3D mapping and the inverse

kinematics problem of the 2-DOF

(two-degree-of-freedom) robotic arm in the 3D space

to demonstrate the operation of the proposed method.

input x

input layer p hiddenlayer q outputlayer r

output y

weight wpq weight wqr

Neural Network Inversion for Multilayer Quaternion Neural Networks

77

In order to study the effect of the proposed method,

we provide learning data with different dimension or

sparseness to examine the characteristics of the

learning and inverse estimation. In addition, we

compare the quaternion network with a real network

in each problem in order to show the effectiveness of

the proposed method.

4.1 Inverse Mapping Problem

We address the inverse estimation problem of

mapping the 3D space as an example of a simple

inverse problem in the quaternion domain. First, the

QNN learns the mapping provided to the points in the

3D space. Then, the network estimates the inverse

mapping of the points given in the 3D space using the

forward relationship obtained in the learning phase.

Here, we perform computer simulations in three types

of transformation (rotation, translation, and scaling),

three types of settlement of the learning points (on a

line, on a plane, and in the 3D grid), and two types of

network (the usual real-value neural network, NN, and

the QNN). As a consequence, we examine 18 types of

experiments.

We consider the three types of transformation

(rotation, translation, and scaling) as follows:

 Rotation: /12 and /6 rotations around the x2

and x3 axes;

 Translation: 0.1, 0.2, and 0.3 translations in the

direction of the x2, x3, and x4 axes;

 Scaling: 0.6, 1.0, and 1.4 times scaling in the

direction of the x2, x3, and x4 axes.

For each transform, the network learns the

relationship between the data before and after the

transformation, and estimates the input that

corresponds to the given output.

Then, we consider the three types of preparation of

the learning data (on a line, on a plane, and in the 3D

grid) as follows:

 On a line: 15 points that satisfy x1 = 0.0, x2 = x3 =

x4 = k, k = {-0.7, -0.6, …, 0.7};

 On a plane: 25 points that satisfy x1 = x2 = 0.0, x3

= k1, x4 = k2, k1 = {-0.6, -0.3, …, 0.6}, k2 = {-0.6,

-0.3, …, 0.6};

 In the 3D grid: 125 points that satisfy x1= 0.0, x2

= k1, x3 = k2, x4 = k3, k1 = {-0.6, -0.3, …, 0.6}, k2 =

{-0.6, -0.3, …, 0.6}, k3 = {-0.6, -0.3, …, 0.6}.

We use the previous data as the network input, and

use the points that are transformed by each

transformation as the corresponding network output.

As an example, the three types of learning data used in

the simulation of the rotation are shown in Fig. 2.

In addition, we consider the two types of networks,

the NN and the QNN, to compare the effectiveness of

the proposed method. The architecture of the former is

four inputs and four outputs, and of the latter it is one

input and one output. The parameters of the networks

are shown in Table 1.

As the estimation data, we use the points that are

distributed on an ellipsoid, which is described as

,1
2

4

2

4

2

3

2

3

2

2

2

2
r

x

r

x

r

x (11)

where r2 = 0.4, r3 = 0.4, r4 = 0.2, as shown in Fig. 3.

Here, we describe x2, x3, and x4 in the polar coordinate,

and obtain the 144 points that satisfy the arguments 1

= {0, /6, …, 11/6} and 2 = {0, /6, …, 11/6}. We

use the data as the outputs. In addition, we use the

data that are inverse-transformed by the previous

transformations as the network input. The network

estimates the corresponding input through the

provided output.

For the learning phase in each case, we confirm the

convergence of errors and the completion of the

learning phase. The mean squared errors between the

inverse-estimated inputs and the correct values are

listed in Table 2 and shown in Fig. 4. First, we

consider the results in each transformation. According

to the results, the error is reduced with increased

dimensions of the learning data in any transformation.

Comparing the QNN and the NN, there is no much

difference in the learning data in the 3D grid.

However, for the learning data on a line and on a

plane, the errors by the QNN are smaller than the

Neural Network Inversion for Multilayer Quaternion Neural Networks

78

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

x2x3

x4

input
output

(a)

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

x2x3

x
4

input
output

(b)

-1 -0.5 0 0.5 1
-1

0
1

-1

-0.5

0

0.5

1

x2x3

x
4

input
output

(c)

Fig. 2 Learning data used in the simulation (a) on a line;

(b) on a plane; and (c) in the 3D grid.

errors by the NN. We consider that the QNN is able to

learn the transforms in the 3D space sufficiently, even

when given lower dimensional training data. Although

the NN is able to learn the transforms with learning

data of sufficient dimension, it cannot learn the

transforms with learning data of lower dimension.

We consider that the QNN realized structurally the

quaternion-based transforms by the quaternion-valued

Table 1 Network parameters for the inverse mapping

simulation.

Parameters
Values

NN QNN

Number of input neurons 4 1

Number of hidden neurons 60 15

Number of output neurons 4 1

Training rate t 0.0005 0.0005

Input correcting rate e 0.001 0.001

Max. number of training epoch 20000 20000

Training error to be attained 0.0001 0.0001

Number of estimating epoch 5000 5000

-0.5

0

0.5

-0.5

0

0.5
-0.5

0

0.5

x2x3

x4

output

Fig. 3 Ellipsoid output data provided to estimate inputs.

weights, and is able to acquire the transforms from the

sparse training data. From the results, we confirm

inverse estimation by the proposed method, and show

the effectiveness of the proposed method with the

transforms in the 3D space.

4.2 Inverse Kinematics Problem

It is considered that the problem of calculating joint

angles with respect to the end-effector coordinates of

the robot arm is an inverse problem. Such inverse

problem expressed by the quaternion can be composed

in the 3D space. In this paper, we consider the

estimation of the joint angles from the end-effector

coordinates of the 2-DOF robotic arm that operates in

the 3D space, which is shown in Fig. 5. In this

problem, the QNN learns the relationship between the

two input joint angles and the corresponding

end-effector coordinates output. Then, it estimates the

two input joint angles with respect to the arbitrarily

Neural Network Inversion for Multilayer Quaternion Neural Networks

79

Table 2 Estimated network input error in each inverse mapping simulation.

Learning points
(1) rotation (2) translation (3) scaling

NN QNN NN QNN NN QNN

(a) on a line 0.3561 0.1145 0.6777 0.0776 0.7011 0.1897

(b) on a plane 0.3186 0.1008 0.6677 0.0611 0.1787 0.1319

(c) in the 3D grid 0.0510 0.0405 0.0365 0.0375 0.0951 0.0322

(a) on line
(b) on plane

(c) in 3D grid

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

NN QNN NN QNN NN QNN(1) rotation
(2) translation

(3) scaling

error

(a) on line

(b) on plane

(c) in 3D grid

Fig. 4 Plot of estimated network input error in each inverse mapping simulation.

Fig. 5 Two-degree-of-freedom arm in the 3D space.

given end-effector coordinates output, inversely using

the forward relationship obtained in learning. In order

to confirm the inverse estimation and the effectiveness

of the proposed method, we perform six simulations

through three types of learning data (the interval of the

joint angles /3, /6, and /12) and two types of

networks (NN and QNN).

First, we prepare the three types of learning data by

setting the joint angles as follows:

 /3 interval: 10 data that satisfy 1 = {0, /3, ,

}, 2 = {0, /3, , }(except (1, 2) = (0,), … ,

(0,), (), …, (, 2));

Neural Network Inversion for Multilayer Quaternion Neural Networks

80

 /6 interval: 37 data that satisfy 1 = {0, /6, ,

}, 2 = {0, /6, , }(except (1, 2) = (0,), … ,

(0,), (), …, (, 5));

 /12 interval: 145 data that satisfy 1 = {0, /12,

, }, 2 = {0, /12, , }(except (1, 2) = (0,

), … , (0,), (), …, (, 11)).

We set the previous angles of (1, 2) as the input

coordinates on the unit circle in the complex plane,

and calculate the output of the end-effector

coordinates. As the estimation data, we use the 36 data

of (1, 2) = (0,), (,),…, (,). The

end-effector coordinates for the learning data of the

/6 interval and for the estimation data are shown in

Fig. 6.

In addition, we consider the two types of the

network (the NN and the QNN), to compare the

effectiveness of the proposed method. The

architecture of the former is eight inputs and four

outputs, and of the latter it is two inputs and one

output. The parameters of the networks are listed in

Table 3.

For the learning phase in each case, we confirm the

convergence of errors and the completion of the

learning phase. The mean squared errors between the

inverse-estimated inputs and the correct values are

listed in Table 4 and shown in Fig. 7.

According to the results, we find that the angular

interval of the learning data becomes smaller when the

estimation error is reduced in the QNN. In addition,

we find that the estimation errors in the QNN become

smaller than the NN. We consider that the QNN

has learned the relationship of the coordinates from the

-1
-0.5

0
0.5

-1-0.500.51

0

0.2

0.4

0.6

0.8

1

x3x2

x
4

output

-1
-0.5

0
0.5

-1-0.500.51

0

0.2

0.4

0.6

0.8

1

x3x2

x4

input

(a) (b)

Fig. 6 End-effector coordinates (a) for learning data of /6 interval and (b) for estimation data.

Table 3 Network parameters for inverse kinematics simulation.

Parameters
Values

NN QNN

Number of input neurons 8 2

Number of hidden neurons 60 15

Number of output neurons 4 1

Training rate t
Case of /3 and /6 interval data 0.001 0.001

Case of /12 interval data 0.0001 0.0001

Input correcting rate e 0.001 0.001

Max. number of training epoch 20000 20000

Training error to be attained 0.0001 0.0001

Number of estimating epoch 10000 10000

Neural Network Inversion for Multilayer Quaternion Neural Networks

81

Table 4 Estimated network input error in each inverse kinematics simulation.

Learning points (interval of angle)
Inverse kinematics

NN QNN

(a) 60 deg. 0.5245 0.4290

(b) 30 deg. 0.6098 0.2704

(c) 15 deg. 0.3262 0.1567

(a) 60 deg.

(b) 30 deg.

(c) 15 deg.
0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

NN

QNN

inverse kinematics

error

(a) 60 deg.

(b) 30 deg.

(c) 15 deg.

Fig. 7 Plot of estimated network input error in each inverse kinematics simulation.

angle sufficiently, even from the sparse training data,

similarly to the simulation of the inverse mapping.

Thus, the estimated error is slightly larger, but it is

considered that the QNN estimates the joint angles

that correspond to the given end-effector coordinates.

However, the accuracy of the estimated results is still

insufficient; therefore, further examination is required.

We consider devising encoding for the joint angles

and examining the parameters of the network as an

improvement for future work.

5. Conclusions

In this paper, we proposed a quaternion network

inversion method for the inverse problem solution that

has been extended to the quaternion domain. Our

simulation of the inverse mapping problem in the 3D

space and the inverse kinematics problem of the robot

arm demonstrated inverse estimation by the proposed

method. Moreover, we showed the effectiveness of the

quaternion network inversion by comparing our

proposed method with the usual real-valued neural

network. In the inverse estimation from learning by

sparse learning data, we verified that the quaternion

network inversion was more effective than the usual

real-valued network. We consider that this occurs

because the quaternion transforms are structurally

realized in the quaternion network. As future work, it

is necessary to consider a regularization method for

the solution of ill-posed inverse problems and an

application to actual problems.

Acknowledgment

This work was partly supported by a Grant-in-Aid

for Scientific Research (#26330284) from the Japan

Neural Network Inversion for Multilayer Quaternion Neural Networks

82

Society for the Promotion of Science.

References

[1] Groetsch, C. W. 1993. “Inverse Problems in the

Mathematical Sciences.” Informatica International.

[2] Neto, F. D. M., and da Silva Neto, A. J. 2011. An

Introduction to Inverse Problems with Applications.

Springer.

[3] Linden, A., and Kindermann, J. 1989. “Inversion of

Multilayer Nets.” In Proceedings of the International Joint

Conference on Neural Networks, 425-30. Washington, D.C.

[4] Valova, I., Kameyama, K., and Kosugi, Y. 1995. “Image

Decomposition by Answer-in-Weights Neural Network.”

IEICE Transactions on Information and Systems E78-D

(9): 1221-4.

[5] Lu, B., and Ito, K. 1995. “Regularization of Inverse

Kinematics for Redundant Manipulators Using Neural

Network Inversions.” In Proceedings of IEEE

International Conference on Neural Networks, 2726-31.

Perth, WA.

[6] Murray, W. R., Heg, C. T., and Pohlhammer, C. M. 1993.

“Iterative Inversion of a Neural Network for Estimating

the Location of a Planar Object.” Proceedings of the

World Congress on Neural Networks 3: 188-93.

[7] Hirose, A. 2006. Complex-Valued Neural Networks.

Springer.

[8] Nitta, T. 2009. Complex-Valued Neural Networks:

Utilizing High-Dimensional Parameters. IGI-Global.

[9] Nitta, T. 1996. “An Extension of the Back-Propagation

Algorithm to Quaternions.” Proceedings of the

International Conference on Neural Information

Processing 1: 247-50. Hong Kong.

[10] Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., and

Nishimura, H. 2004. “Quaternion Neural Network with

Geometrical Operators.” Journal of Intelligent and Fuzzy

Systems 15 (3-4): 149-64.

[11] Kuroe, Y. 2011. “Models of Clifford Recurrent Neural

Networks and Their Dynamics.” Proceedings of the 2011

International Joint Conference on Neural Networks,

1035-41. San Jose.

[12] Ogawa, T. 2009. “Complex-Valued Neural Network and

Inverse Problems.” In Complex-Valued Neural Networks:

Utilizing High-Dimensional Parameters, edited by T.

Nitta. IGI-Global, Chapter 2, 27-55.

[13] Fukami, S., Ogawa, T., and Kanada, H. 2008.

“Regularization for Complex-Valued Network

Inversion.” Proceedings of the SICE Annual Conference,

1237-42. Tokyo.

[14] Conway, J. H., and Smith, D. A. 2003. On Quaternions

and Octonions—Their Geometry, Arithmetic, and

Symmetry. A. K. Peters, Ltd.

[15] Garling, D. J. H. 2011. Clifford Algebras: An

Introduction. Cambridge University Press.

[16] Kristiansen, R., and Nicklasson, P. J. 2005. “Satellite

Attitude Control by Quaternion-Based Backstepping.”

Proceedings of the 2005 American Control Conference 2:

907-12.

[17] Vince, J. 2010. Geometric Algebra for Computer

Graphics. Springer.

