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Abstract: Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion 

method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a 

higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural 

network models have been proposed. Using the quaternion, we have the advantage of expressing 3D (three-dimensional) object 

attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the 

quaternion. In this paper, we extend the neural network inversion method to the quaternion domain. Further, we provide the results of 

the computer experiments to demonstrate the process and effectiveness of our method. 
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1. Introduction 

Inverse problems determine the inner mechanisms 

or causes of an observed phenomenon. The solutions 

to inverse problems have been required in various 

engineering fields [1, 2]. The network inversion 

method is a neural network-based solution [3] that has 

been studied in order to apply the solution to the 

inverse problems of image restoration, inverse 

kinematics, and so on [4-6]. 

Recently, artificial neural network models and their 

training methods for handling high-dimensional 

numbers that include complex numbers or quaternions 

have been proposed [7-11]. High dimensional neural 

networks are able to learn and estimate the 

relationship between high dimension inputs and 

outputs. Given that the quaternions easily express the 

geometrical relationships in the 3D 

(three-dimensional) space, they are used in the fields 

of computer graphics, robot control, and so on. 

Inverse problems whose causes and results extend 

to the high dimensional domain can arise in various 

engineering fields. For example, these problems are 
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included in the image restoration of the frequency 

domain, the inverse estimation of the attitude change 

of objects in the 3D space, and more. The adaptive 

solution of learning with neural networks to solve 

inverse problems must be extended to the high 

dimensional domain. Presently, an extension to the 

complex domain of network inversion has been 

proposed [12, 13]. 

In this paper, we propose an extension of the neural 

network inversion method to the quaternion for 

solving inverse problems in the quaternion domain. 

We performed simulations of the inverse mapping 

problem in the 3D space, and applied a procedure of 

the proposed quaternion network inversion method to 

the inverse kinematics problem of robot arms. 

Moreover, we performed a comparison with a usual 

real-value network inversion to demonstrate the 

effectiveness of the proposed quaternion network 

inversion method. 

The rest of this paper is organized as follows: 

Section 2 discusses inverse problems and neural 

networks; Section 3 introduces QNNs (quaternion 

neural networks); Section 4 presents computer 

experiments; Section 5 provides our conclusions. 

D 
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2. Inverse Problems and Neural Networks 

An inverse problem is an estimation of the cause or 

internal mechanism that produces a given 

phenomenon from a set of observed phenomena. A 

direct problem leads to the results from a cause; in 

contrast, an inverse problem finds a cause from the 

results, or estimates an input from the output. Inverse 

problems have the disadvantage that the existence, 

uniqueness, and stability of a solution are not 

guaranteed in general; for this reason, inverse 

problems are referred to as ill-posed inverse problems 

[1]. Though ill-posed inverse problems are often 

referred to simply as inverse problems, in this paper, 

we refer to the inverse problem as such that which 

estimates a cause from the result, regardless of its 

ill-posedness. 

2.1 Network Inversion 

A multilayer neural network usually learns an 

input-output relationship from the direction of the 

input to the output. In addition, it estimates the output 

from the given input using the learned relationship in 

the forward direction. Therefore, such neural network 

is suitable for a solution of direct problems. In general, 

the error back-propagation method based on the 

gradient method is used for learning. 

Network inversion is a method to estimate the input 

from the output using a learned network [3]. 

Essentially, by repeating modifications based on the 

gradient method, the input is estimated from the 

output. In an actual case of solving the inverse 

problem by a network inversion, a two-step process is 

utilized, where forward modeling occurs during the 

learning phase (the first step), and inverse estimation 

occurs during the inverse use of the forward model 

(the second step). In the learning phase, forward 

modeling is performed by the error back-propagation 

method using tutorial data, similar to the usual 

learning of the multi-layer neural network. In the 

inverse estimation phase, the inverse problem is 

solved using the forward model to estimate the input 

from the output of the network. 

The principle of inverse estimation by network 

inversion is an iterative minimization of the output 

error based on the gradient method, similar to the 

principle of learning by the error back-propagation 

method. In the error back-propagation method, the 

output error is assumed to be caused by errors in the 

weights; to correct the weights, the error is minimized. 

In the inverse estimation method using network 

inversion, it is assumed that the weights obtained by 

learning are correct, and the input is to be corrected by 

minimizing the output errors. 

In the learning phase of the usual error 

back-propagation method, we feed the tutorial input x, 

calculate the output y, provide the tutorial output y', 

and calculate the output error E. Then, the weights w 

are corrected to minimize the output error E as 

w

E
ww t

oldnew




 

            

(1) 

where t is the learning coefficient. The input/output 

relationship is composed in the multilayer networks 

that completed the learning. In other words, the output 

error is assumed to be caused by an error of the weight 

in the learning. 

In the inverse estimation phase, we can correct the 

input x instead of the weights w to minimize the 

output error E, based on the duality of the weights w 

and the input x. By fixing the weights obtained in the 

learning, the input x is iteratively updated from the 

provided output y', based on the gradient method, as 

x

E
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(2) 

where e is the estimation coefficient. When the output 

error is substantially reduced by iterative 

modifications of the input, we obtain the input that 

corresponds to the given output. The learned 

relationship is inversely used in the network inversion. 

In other words, the output error is assumed to be 

caused by an error of the input in the inverse 

estimation. This is the principle of inverse estimation 

of the network inversion. 
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3. QNNs (Quaternion Neural Networks) 

Quaternion, which is one of the high dimensional 

numbers, was devised by Refs. [14, 15]. The 

quaternion is a high dimensional number with a real 

part and three imaginary parts, and is a system that 

expresses the characteristics of the 3D space 

efficiently. Therefore, the quaternion is known widely, 

because it is used for the attitude control satellite, the 

imaging of the solid model in computer graphics, and 

more [16, 17]. 

Complex-valued network inversion [12] uses a 

multilayer neural network that includes complex 

weights and complex neurons. In this method, the 

complex-valued neural network estimates a complex 

input from a complex output using a trained network. 

It is an extension of the input correction principle of a 

usual network inversion to the complex domain.  

The quaternion is expressed as x = x1 + ix2 + jx3 + 

kx4, where i, j, and k are three imaginary units. The 

numbers x1, x2, x3, and x4, which are real numbers, 

represent each component of the quaternion. In 

addition, the imaginary units satisfy the relationships: 

i
2
 = j

2
 = k

2
 = ijk = 1, ij = –ji = k, jk = –kj = i, and ki = 

–ik = j. Quaternions satisfy the associative law of 

multiplication and the distributive law of addition. 

However, quaternions do not satisfy the commutative 

law of multiplication. In particular, the quaternion 

whose real part is zero is called a pure imaginary 

quaternion, and it is expressed as x = ix2 + jx3 + kx4. 

Various neural network models that were extended 

to the quaternion, such as single neuron, multilayered, 

and recurrent type have been proposed and studied 

[9-11]. Using quaternion neurons and weights, 

multilayer QNNs can learn the relationship between 

inputs and outputs that is extended to the quaternion. 

In this paper, we consider a solution to the inverse 

problem using the multilayer QNN. 

3.1 Quaternion Network Inversion 

In this paper, we use a multi-layer neural network 

that extends to the quaternion input, output, and 

weights. We propose a quaternion network inversion 

to solve an inverse problem using a network that has 

completed forward learning. This method estimates 

the quaternion input that corresponds to the given 

quaternion output using a trained multilayer QNN. 

The input modification principle of this method is an 

extension of the quaternion area of the network 

inversion. In addition, we use a neuron to apply the 

sigmoid function independently to each part of the 

quaternion input. That is, we consider the three-layer 

network that uses the sigmoid function expressed as 

         4321 skfsjfsifsf sf
, 

 
u

u

e

e
uf










1

1
                 (3) 

for the hidden layer and the output layer, where s = s1 

+ is2 + js3 + ks4 represents the weighted sum of the 

inputs. The schematic view of the network is shown in 

Fig. 1. 

In the learning phase, the network iteratively 

updates the quaternion weights from a given 

quaternion learning input and output data, based on 

the error back-propagation method that has been 

extended to the quaternion. The output error function 

is defined as 

    
n

nrnr

r

nrnrE ydyd
2

1     (4) 

where dnr and ynr are the quaternion learning output 

and the quaternion network output that are provided to 

the r-th element of the n-th training data, respectively. 

In addition, the error signal nr from the r-th output 

element and the error signal nq from the q-th hidden 

element can be calculated as 

     ,.. nrnrnrnrnr yyydδ  11  

    ,..  
r

qrnrnqnqnq wδvvδ 11    (5) 

where vnq and wqr are the output from q-th hidden 

element of the n-th training data and the weight   

from the q-th hidden element to the r-th output 

element, respectively. We represent the multiplication 

of each element of the quaternion by the symbol “ . ”.  
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Fig. 1  Example of a three-layer QNN. 
 

Furthermore, we express the quaternion whose every 

element is one by the symbol “1”. Based on the error 

signals, the weight wqr between the hidden and the 

output elements, and the weight wpq between the input 

and the hidden elements are updated by 

, 
n

nqnrt
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qr vδww   

, 
n
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old
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pq xδww 

       

(6) 

where t is the learning coefficient. By repeating this 

updating procedure, the quaternion weights 

distribution to compose the input-output relationship 

of the given learning data is obtained. 

In the inverse estimation phase, we provide a 

tentative quaternion input while fixing the relationship 

obtained by learning. Then, we calculate the output 

error function from the output obtained from the 

quaternion, which is defined as 

   ,
2

1
rr

r

rrE ydyd       (7) 

where dr and yr are the quaternion learning output and 

the quaternion network output that are provided to the 

r-th element of test data, respectively. The error signal 

r from r-th output element and the error signal q 

from the q-th hidden element can be calculated as 

     ,.. rrrrr yyydδ  11  

    ,..  
r

qrrqqq wδvvδ 11

  

   (8) 

where vq and wqr are the output from the q-th hidden 

element and the weight from the q-th hidden element 

to the r-th output element, respectively. The amount 

of input correction p for the p-th input element is 

expressed as 

, 
q

pqqp wδδ             (9) 

where wpq is the weight from the p-th input element to 

the q-th hidden element. Based on the amount of input 

correction, the input xp is updated by 

,pe

old

p

new

p δxx             (10) 

where e is the coefficient of input correction. By 

repeating this updating procedure, we can estimate the 

quaternion input from the given quaternion output, 

using the quaternions weight distribution obtained in 

the learning phase. 

4. Computer Experiments 

In this study, we handle the inverse estimation 

problem of the 3D mapping and the inverse 

kinematics problem of the 2-DOF 

(two-degree-of-freedom) robotic arm in the 3D space 

to demonstrate the operation of the proposed method. 
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In order to study the effect of the proposed method, 

we provide learning data with different dimension or 

sparseness to examine the characteristics of the 

learning and inverse estimation. In addition, we 

compare the quaternion network with a real network 

in each problem in order to show the effectiveness of 

the proposed method. 

4.1 Inverse Mapping Problem 

We address the inverse estimation problem of 

mapping the 3D space as an example of a simple 

inverse problem in the quaternion domain. First, the 

QNN learns the mapping provided to the points in the 

3D space. Then, the network estimates the inverse 

mapping of the points given in the 3D space using the 

forward relationship obtained in the learning phase. 

Here, we perform computer simulations in three types 

of transformation (rotation, translation, and scaling), 

three types of settlement of the learning points (on a 

line, on a plane, and in the 3D grid), and two types of 

network (the usual real-value neural network, NN, and 

the QNN). As a consequence, we examine 18 types of 

experiments. 

We consider the three types of transformation 

(rotation, translation, and scaling) as follows: 

 Rotation: /12 and /6 rotations around the x2  

and x3 axes; 

 Translation: 0.1, 0.2, and 0.3 translations in the 

direction of the x2, x3, and x4 axes;  

 Scaling: 0.6, 1.0, and 1.4 times scaling in the 

direction of the x2, x3, and x4 axes. 

For each transform, the network learns the 

relationship between the data before and after the 

transformation, and estimates the input that 

corresponds to the given output.  

Then, we consider the three types of preparation of 

the learning data (on a line, on a plane, and in the 3D 

grid) as follows: 

 On a line: 15 points that satisfy x1 = 0.0, x2 = x3 = 

x4 = k, k = {-0.7, -0.6, …, 0.7}; 

 On a plane: 25 points that satisfy x1 = x2 = 0.0, x3 

= k1, x4 = k2, k1 = {-0.6, -0.3, …, 0.6}, k2 = {-0.6, 

-0.3, …, 0.6}; 

 In the 3D grid: 125 points that satisfy x1= 0.0, x2 

= k1, x3 = k2, x4 = k3, k1 = {-0.6, -0.3, …, 0.6}, k2 = 

{-0.6, -0.3, …, 0.6}, k3 = {-0.6, -0.3, …, 0.6}. 

We use the previous data as the network input, and 

use the points that are transformed by each 

transformation as the corresponding network output. 

As an example, the three types of learning data used in 

the simulation of the rotation are shown in Fig. 2. 

In addition, we consider the two types of networks, 

the NN and the QNN, to compare the effectiveness of 

the proposed method. The architecture of the former is 

four inputs and four outputs, and of the latter it is one 

input and one output. The parameters of the networks 

are shown in Table 1. 

As the estimation data, we use the points that are 

distributed on an ellipsoid, which is described as 

,1
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x          (11) 

where r2 = 0.4, r3 = 0.4, r4 = 0.2, as shown in Fig. 3. 

Here, we describe x2, x3, and x4 in the polar coordinate, 

and obtain the 144 points that satisfy the arguments 1 

= {0, /6, …, 11/6} and 2 = {0, /6, …, 11/6}. We 

use the data as the outputs. In addition, we use the 

data that are inverse-transformed by the previous 

transformations as the network input. The network 

estimates the corresponding input through the 

provided output. 

For the learning phase in each case, we confirm the 

convergence of errors and the completion of the 

learning phase. The mean squared errors between the 

inverse-estimated inputs and the correct values are 

listed in Table 2 and shown in Fig. 4. First, we 

consider the results in each transformation. According 

to the results, the error is reduced with increased 

dimensions of the learning data in any transformation. 

Comparing the QNN and the NN, there is no much 

difference in the learning data in the 3D grid.  

However, for the learning data on a line and on a 

plane, the errors by the QNN are smaller than the 
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Fig. 2  Learning data used in the simulation (a) on a line; 

(b) on a plane; and (c) in the 3D grid. 
 

errors by the NN. We consider that the QNN is able to 

learn the transforms in the 3D space sufficiently, even 

when given lower dimensional training data. Although 

the NN is able to learn the transforms with learning 

data of sufficient dimension, it cannot learn the 

transforms with learning data of lower dimension.  

We consider that the QNN realized structurally the 

quaternion-based transforms by the quaternion-valued 

Table 1  Network parameters for the inverse mapping 

simulation.  

Parameters 
Values 

NN QNN 

Number of input neurons 4 1 

Number of hidden neurons 60 15 

Number of output neurons 4 1 

Training rate t 0.0005 0.0005 

Input correcting rate e 0.001 0.001 

Max. number of training epoch 20000 20000 

Training error to be attained 0.0001 0.0001 

Number of estimating epoch 5000 5000 
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Fig. 3  Ellipsoid output data provided to estimate inputs.  
 

weights, and is able to acquire the transforms from the 

sparse training data. From the results, we confirm 

inverse estimation by the proposed method, and show 

the effectiveness of the proposed method with the 

transforms in the 3D space. 

4.2 Inverse Kinematics Problem 

It is considered that the problem of calculating joint 

angles with respect to the end-effector coordinates of 

the robot arm is an inverse problem. Such inverse 

problem expressed by the quaternion can be composed 

in the 3D space. In this paper, we consider the 

estimation of the joint angles from the end-effector 

coordinates of the 2-DOF robotic arm that operates in 

the 3D space, which is shown in Fig. 5. In this 

problem, the QNN learns the relationship between the 

two input joint angles and the corresponding 

end-effector coordinates output. Then, it estimates the 

two input joint angles with respect to the arbitrarily 
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Table 2  Estimated network input error in each inverse mapping simulation.  

Learning points 
(1) rotation (2) translation (3) scaling 

NN QNN NN QNN NN QNN 

(a) on a line 0.3561 0.1145 0.6777 0.0776 0.7011 0.1897 

(b) on a plane 0.3186 0.1008 0.6677 0.0611 0.1787 0.1319 

(c) in the 3D grid 0.0510 0.0405 0.0365 0.0375 0.0951 0.0322 

 

(a) on line
(b) on plane

(c) in 3D grid
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Fig. 4  Plot of estimated network input error in each inverse mapping simulation.  
 

 
Fig. 5  Two-degree-of-freedom arm in the 3D space. 
 

given end-effector coordinates output, inversely using 

the forward relationship obtained in learning. In order 

to confirm the inverse estimation and the effectiveness 

of the proposed method, we perform six simulations 

through three types of learning data (the interval of the 

joint angles /3, /6, and /12) and two types of 

networks (NN and QNN).  

First, we prepare the three types of learning data by 

setting the joint angles as follows: 

 /3 interval: 10 data that satisfy 1 = {0, /3, , 

}, 2 = {0, /3, , }(except (1, 2) = (0, ), … , 

(0, ), (), …, (, 2) );  
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 /6 interval: 37 data that satisfy 1 = {0, /6, , 

}, 2 = {0, /6, , }(except (1, 2) = (0, ), … , 

(0, ), (), …, (, 5) );  

 /12 interval: 145 data that satisfy 1 = {0, /12, 

, }, 2 = {0, /12, , }(except (1, 2) = (0, 

), … , (0, ), (), …, (, 11) ).  

We set the previous angles of (1, 2) as the input 

coordinates on the unit circle in the complex plane, 

and calculate the output of the end-effector 

coordinates. As the estimation data, we use the 36 data 

of (1, 2) = (0, ), (, ),…, (, ). The 

end-effector coordinates for the learning data of the 

/6 interval and for the estimation data are shown in 

Fig. 6. 

In addition, we consider the two types of the 

network (the NN and the QNN), to compare the 

effectiveness of the proposed method. The 

architecture of the former is eight inputs and four 

outputs, and of the latter it is two inputs and one 

output. The parameters of the networks are listed in 

Table 3.  

For the learning phase in each case, we confirm the 

convergence of errors and the completion of the 

learning phase. The mean squared errors between the 

inverse-estimated inputs and the correct values are 

listed in Table 4 and shown in Fig. 7.  

According to the results, we find that the angular 

interval of the learning data becomes smaller when the 

estimation error is reduced in the QNN. In addition, 

we find that the estimation errors in the QNN become 

smaller than the NN. We consider that the QNN   

has learned the relationship of the coordinates from the  
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(a)                                                           (b) 

Fig. 6  End-effector coordinates (a) for learning data of /6 interval and (b) for estimation data. 
 

Table 3  Network parameters for inverse kinematics simulation.  

Parameters 
Values 

NN QNN 

Number of input neurons 8 2 

Number of hidden neurons 60 15 

Number of output neurons 4 1 

Training rate t 
Case of /3 and /6 interval data 0.001 0.001 

Case of /12 interval data 0.0001 0.0001 

Input correcting rate e 0.001 0.001 

Max. number of training epoch 20000 20000 

Training error to be attained 0.0001 0.0001 

Number of estimating epoch 10000 10000 
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Table 4  Estimated network input error in each inverse kinematics simulation.  

Learning points (interval of angle) 
Inverse kinematics 

NN QNN 

(a) 60 deg.  0.5245 0.4290 

(b) 30 deg.  0.6098 0.2704 

(c) 15 deg.  0.3262 0.1567 
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Fig. 7  Plot of estimated network input error in each inverse kinematics simulation. 
 

angle sufficiently, even from the sparse training data, 

similarly to the simulation of the inverse mapping. 

Thus, the estimated error is slightly larger, but it is 

considered that the QNN estimates the joint angles 

that correspond to the given end-effector coordinates. 

However, the accuracy of the estimated results is still 

insufficient; therefore, further examination is required. 

We consider devising encoding for the joint angles 

and examining the parameters of the network as an 

improvement for future work. 

5. Conclusions 

In this paper, we proposed a quaternion network 

inversion method for the inverse problem solution that 

has been extended to the quaternion domain. Our 

simulation of the inverse mapping problem in the 3D 

space and the inverse kinematics problem of the robot 

arm demonstrated inverse estimation by the proposed 

method. Moreover, we showed the effectiveness of the 

quaternion network inversion by comparing our 

proposed method with the usual real-valued neural 

network. In the inverse estimation from learning by 

sparse learning data, we verified that the quaternion 

network inversion was more effective than the usual 

real-valued network. We consider that this occurs 

because the quaternion transforms are structurally 

realized in the quaternion network. As future work, it 

is necessary to consider a regularization method for 

the solution of ill-posed inverse problems and an 

application to actual problems. 
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