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Abstract: The Navier-Stokes equations for a fluid flow are applied to a pipe. Under conditions of symmetry these are reduced to the 
well-known equation of zeroth modified Bessel, which is solved to find the velocity profile and shape of the axial velocity. 
 
 

1. Introduction  

The fluids transport such as water, oil, etc. is done 
through pipes, so it is important to study the flow 
characteristics under different conditions such as flow 
rate, pipe size and then obtain mathematical 
expressions for the velocity profile, the axial velocity, 
flow rate, etc. Here under symmetry conditions, the 
resulting differential equations can be resolved 
accurately in terms of Bessel functions. This work is 
divided in five parts: This introduction, section 2 
illustrates the method for which we obtain the 
modified Bessel equation from the Navier Stokes 
equations; in section 3 we resolve the Bessel 
differential equation; section 4 is an appendix with the 
most important characteristics about the modified 
Bessel functions used in this article. Finally, section 5 
presents conclusions and future projects. 

2. Navier-Stokes Equations 

Suppose a long circular cylindrical pipe of radius R . 
We consider an incompressible, isothermal Newtonian 
flow (density constantρ = , viscosity constanteµ = ), 

with a velocity field ( ), ,r zu u u uφ=


 in terms of 
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cylindrical coordinates ( ), ,r zφ . The continuity 

equation for incompressible flow is [1, 2] 

 1 1 0r zuru u
r r r z




 

  
  

      (1) 

The z-component of the Navier-Stokes equations is 
written as 

2 2 2

2 2 2 2

1 1 1

z z z z
r z

z z z z

uu u u uu u
t r r z

u u u udp
dz r r r r z






  

   
   

   
                 

(2) 
In our development of flow in the pipe, considering 

the velocity components with axial symmetry, that is, 
they only depend on the radius and time, we have 

 ,r ru u r t ,  ,u u r t  ,  ,z zu u r t  (3) 

Without changes in z, the continuity equation for 
incompressible flow, becomes 

( ) 0rru
r

∂
=

∂
            (4) 

where we must have, ( ), ,rru f z tφ= . However, 

under consideration of axial symmetry ( )rru f t= . 

Moreover, ( ) 0r

f t
u

r
= = at r R= , for which 
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( )f t  must be zero. It follows that there is no radial 

velocity, that is, ( ), 0ru r t = . 

By similar arguments to those above, we find that
0uφ = , and ( ),z zu u r t= . 

Therefore, Navier-Stokes equation is written as 

2

2

1 1z z zu u udp
t dz r r r


 

            
    (5) 

If the pressure ( ) dpG t
dz

= − , is periodic with 

frequency w , we can write: 

( ) ( )

0
Re i lwt

l
l

G t G e
∞

=

 =  
 
∑         (6) 

where Re  denotes the real part. If this gradient has 
an infinite period, we can take the Fourier transform. 

Similarly, for the Fourier series expansion of 
z-component of the velocity, we have 

( ) ( )

0
, Re i lwt

z zl
l

u r t u e
∞

=

 =  
 
∑         (7) 

Substituting equations 6 and 7 into equation 5 and 
matching harmonics, one has 

2

2

1zl zl
zl l

u uilwu G
r r r

 
           

     (8) 

If it is assumed that, the fluid does not slip on the 

surface,   0zlu r R   and a regularity condition 

on the cylinder axis, i.e.  0 maxzlu r   . The 

steady state component 0l   is simply Poiseuille 

flow [1] 

2
0 0

0 2

1 0z zu uG
r r r


           

      (9) 

and the equation 8 can be written as 

2
0 0 0

2

1 0z zd u du G
dr r dr 

          (10) 

The solution of the equation 10 is 

2 2
0

0 21
4z

G R ru
R

      
          (11) 

where the maximum speed is given for 

2
0

0max 4z
G Ru


             (12) 

The velocity distribution is in the form of a 
parabola, with the fastest velocity in the vertex and 
friction cause the velocity decrease outwards.     
The figure 1 shows the velocity profile in the steady 
state. 

The flow rate is calculated as follows 

2 42
0 0

0 2
0

1 2
4 8

R

z
G R G RrQ u dA rdr

R



 

         

(13) 
where the integral extends over the entire cross 
sectional area A , of the pipe. 

The specific flow rate,
Qq
A

 , is 

2
0

2 8
G RQq

R 
            (14) 

In Darcy's equation, the flow rate has the form 

dpQ kA
dz

              (15) 

where the constant k  is the hydraulic conductivity, 
A  represents the cross-sectional area of the pipe, and 
z is the axial direction. 

Comparing equation 13 to equation 15, one has 
that 

0
dpG
dz

               (16) 

and 
2

8
Rk


                (17) 

for the hydraulic conductivity, that is a property of 
both the fluid and the pipe. 

 
 



An Application of Bessel Functions: Study of Transient Flow in a Cylindrical Pipe 74 

 

 
Fig. 1  Velocity profile in a pipe or radius R for the steady state. 
 

On the other hand, the terms time independent 

 zlu r  with 0l   obey the equation 

 zl
zl l

dud r i lw u G
r dr dr



     

    (18) 

Rearranging terms, equation 18 is written as 

2

2

1zl zl l
zl

d u du Glwi u
dr r dr


 

       
   (19) 

Then, changing rx R  variables, finally we 

obtain 
2 22

2 2 2
2
zl zl l

zl
d u du R GlwRx x ix u x
dx dx


 

       
 

(20) 
This equation 20 is the desired differential equation 

to describe the transient state of the fluid in the pipe, 
and in the next section, we will resolve it. 

3. Modified Bessel Differential Equation 

The homogeneous equation from equation 20 is 

2 2
2 2

2 0zl zl
zl

d u du lwRx x ix u
dx dx




       
   (21) 

which is equation of zeroth modified Bessel and its 
solution is written as 

     1 1
2 2

0 0 0 0zlu x AI i lW x BK i lW x  (22) 

where A , B  are arbitrary constants, and  0I y , 

 0K y  are the modified Bessel functions of the first 
and second kind of order zero, defined for the 
equations 47 and 50. In addition, the parameter 0W  
is the Womersley dimensionless number [4], and it is 
a measure of the ration of the terms time dependent of 
the momentum equation to the viscous part, given for 
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0
w wW R R
 

           (23) 

The parameters  , 2
04W  are the dynamic 

viscosity and the kinetic Reynolds number [5] 
respectively. 

On the other hand, the particular solution of the 
equation 20 is 

  l
zl

Gu x i
l w

            (24) 

The full solution is written as 
 

   1 1
2 2

0 0 0 0

zl

l

u x
GAI i lW x BK i lW x i

l w



 
(25) 

Since the velocity is finite at 0r   and 0K  
becomes infinite at this value, physically acceptable 
solution is 0I . Then, the solution is 

   1
2

0 0
l

zl
Gu x AI i lW x i

l w
      (26) 

Applying the boundary conditions, 
 1 0zlu x    in the equation 26, we obtain 

 1
2

0 0

lGi
l wA

I i lW

             (27) 

Substituting equation 27 in equation 26 and 
rearranging terms, we obtain 

 
 
 

1
2

0 0

1
2

0 0

1l
zl

I i lW xGu x i
l w I i lW

          

     (28) 

Using the relation of Bessel functions given by 
equation 43 in equation 28, one has 

 
 
 

3
2

0 0

3
2

0 0

1l
zl

J i lW xGu x i
l w J i lW

          

   (29) 

where  0J y  is the Bessel function of the first kind 
and order zero. 

Then for a flow of axial symmetry of an isotropic, 
incompressible and Newtonian fluid without external 
forces, we have derived an analytical solution for 
laminar flow pulses in a pipe; this is often referred to 
as Womersley flow. 

The axial velocity as a function of radial position r 
and time t is given by 

 

 

2 2
0

2

3
2

0 0

3
21

0 0

, 1
4

Re 1

z

ilwtl

l

G R ru r t
R

rJ i lW
G Ri e

l w J i lW









       
                          


 (30) 

where we used the equations 6, 7 and equation 29. 
Note that in equation 30, lG  is the time 

independent pressure gradient, and ilwt
lG e  is the 

time dependent pressure gradient. The figure 2 show 
the velocity profiles for different components. 

Using the equations 43 and 47, the equation 30 can 
be written as 

 
   

2 2 0 0
0

2
1 0 0

, 1 Re 1
4

ilwtl
z

l

r rber lW ibei lW
G R Gr R Ru r t i e

R l w ber lW ibei lW 





                                                   

     (31) 

where ber  and bei , are the real and imaginary parts of    0 0I y J iy , and their values are given by the 
equations 48 and 49. 

Finally, after doing some algebra, the equation for the velocity  ,zu r t  is written as 
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   
2 2

0
2

1

, 1 sin
4

l
z

l

G R Gru r t lwt
R l w 





       
  

     

     
0 0 0 0

2 2
1

0 0

cosl

l

r rber lW bei lW bei lW ber lWG wlt R R
l w ber lW bei lW





            



  

     

     
0 0 0 0

2 2
1

0 0

l

l

r rbei lW bei lW ber lW ber lWG sin wlt R R
l w ber lW bei lW





            



           (32) 

In particular, the axial velocity  0,zu r t  is given by 

   
       

     
2

0 00
2 2

1 1
0 0

cos sin
0, sin

4
l l

z
l l

bei lW wlt ber lW wltG R G Gu t lwt
l w l w ber lW bei lW  

 

 


  


     (33) 

 
Fig. 2  Velocity profiles in a water pipe of radius R for each component. 
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Fig. 3  The sinusoidal axial velocity in a water pipe of radius R for each component. 
 

In equations 32 and 33 is omitted the subscript zero 
in ber and bei functions. In figure 3 it can be seen the 
axial velocity time dependent, i. e. the waveform for 
each component. 

4. Appendix 

Bessel functions are one of the most important 
functions in physics and mathematics. The Bessel´s 
differential equation [6] is 

 
2

2 2 2
2 0d y dyx x x y

dx dx
       (34) 

Thus, when ν is not an integer we may write the 
solution of the equation 34 in the form 

     zlu x AJ x BJ x        (35) 

where A , B are arbitrary constants and  J x  is 

known as the Bessel function of the first kind of order 
ν, and is defined by the equation [7] 

 
 

 

2
0 1

2

0

11;
2 1 4

1
4

2 1 !

r

r

xJ x F x

x
x

r



 














       

    


  

  (36) 

where  2 1 1 2, ; ;F x   is the hypergeometric 

function of two parameters  and one parameter  . 

However, when the number   is an integer n , 
the complete solution is 

     n ny x CJ x DY x         (37) 

where  nJ x  is defined by the equation 36 and 

 nY x  is given by 

   
   

 
    

2 21

0 0

1 ! 12 1 1 2 1log
2 ! ! ! 2

rn r n rn

n n
r r

n r xY x x J x r n r
r x r n r

  
  

  

 

                                    
 

(38) 
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The function  nY x  so defined is known as 

Bessel function of the second kind of order n or 
Newmann function; the constant   is known as 

Euler´s constant, and  r  is given for the equation 

[6] 

 
1

1r

s

r
s




              (39) 

Other equation important is known as modified 
Bessel differential equation 

 
2

2 2 2
2 0d y dyx x x y

dx dx
        (40) 

This equation 40 can be transform into the equation 
34, when replacing x  by ix . However, this leads to 
a complex solution of the equation 34. 

Similarly, to what happened with the solution of 
equation 34, there are two possible general solutions 
for the equation 40, that depend if  an integer is or 
not. 

When   is not an integer the solution of this 
equation is 

     y x AI x BI x         (41) 

where the function  I x  is defined by the equation 

 
 

2
0 1

11;
2 1 4

xI x F x


  


      
  (42) 

Comparing equation 42 with equation 36 we see 
that 

   I x i J ix
 

            (43) 

a result which might have been conjured from the 
differential equation 40. 

If   is an integer n , the general solution of the 
equation 40 is 

     n ny x AI x BK x         (44) 

where the function  nK x  is defined by the 

equation 

     

   

1

21

0

11 log
2

1 1 !1
2 ! 2

n
n n

r n rn

r

K x x I x

n r x
r



 



             

       
 

 
 

    
2

1

1 11
2 ! ! 2

n r
n

r

x r n r
r n r

 




      

(45) 
The functions  nI x ,  nK x  defined by the 

equations 42 and 45 respectively are known as 
modified Bessel functions of the first and second kind 
of order n. 

A particularly important case is when 0n  . In 
this case the solution is 

     

   
0 0

3
2

0 0

y x AI ix BK ix

AJ i x BK ix        

 

 
      (46) 

where  0I y  and  0K y  are the modified Bessel 

functions of the first and second kind of order zero. 
It is common to introduce two new functions 

 nber x  and  nbei x  which are [7, 8] respectively 

the real and imaginary parts of  nI ix , i. e. 

     0I ix ber x ibei x        (47) 

In equation 47 is omitted the subscript zero in ber 
and bei functions. 

From definition given in the equation 44 

 
 
 

2
2

2
0

1 1
42 !

s s

s

ber x x
s





            (48) 

and 

 
 

 

2 1
2

2
0

1 1
42 1 !

s s

s

bei x x
s





       
    (49) 

In similar way the functions  nker x  and 

 nkei x  are defined to be respectively the real and 
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imaginary parts of the complex function  nK ix , i. 

e. 

     0K ix ker x ikei x  ,       (50) 

where is omitted the subscript zero in  ker x  and 

 kei x , and their expressions are given by 

   

 
 
 

 
4

2
1

1log
2

1
2

4 22 !

r r

r

ker x x ber x

xbei x r
r










            

      
   (51) 

and 

   

 
 

 
 

4 2

2
1

1log
2

1
2 1

4 22 1 !

r r

r

kei x x bei x

xber x r
r










            

       


(52) 

Finally, it is noteworthy that these four functions 
are very useful in applications to engineering problems. 

5. Conclusions 

Was successfully applied to the solution of the 
modified Bessel equation to find the velocity profile 
and the axial velocity for the transient flow of a fluid 

in a pipe. Furthermore, the Fourier transform is used 
in the analysis of the above solution to apply the 
superposition. Based on this work we hope to attack 
other flows where the density is not constant, but 
whose expression allows us according to the 
symmetry of the problem, expressing the 
Navier-Stokes equations in a Bessel equation, using 
the Fourier transform and obtaining information about 
the transient flow. 
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