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Abstract: We study the problem of scheduling n  jobs on m  parallel bounded batch machines to minimize the sum of squared 

machine loads. Each batch contains at most B  jobs, and the processing time of a batch is equal to the longest processing time of the 
jobs in this batch. We prove this problem to be NP-hard. Furthermore, we present a polynomial time approximation scheme (PTAS) 
and a fully polynomial time approximation scheme (FPTAS) for this problem. 

 
Keywords: Scheduling; Parallel batch; Polynomial time approximation scheme; FPTAS 
 

1. Introduction 

A batch machine is a machine that can process up to 

B  jobs simultaneously as a batch. The research on 

this model is motivated by burn-in operations in 

semiconductor manufacturing (Lee et al. (1992)). 

There are two variants of the burn-in model: the 

unbounded model, in which there is no upper bound 

on the number of jobs that may be processed in the 

same batch; and the bounded model, in which at most 

B n  jobs can be processed in the same batch. 

In this paper we study the following problem: We 
are given a job set 

1 2{ }nJ J J J    . Each job 

jJ  has a processing time ( 1 2 )jp j n     ( jp  is 

a positive integer), which specifies the minimum time 

needed to process this job. All jobs are available at 

time 0 . We are also given m  identical parallel 

batch machines 1 2 mM M M   . At most B n  

jobs can be processed at one time on each machine. 

The jobs processed together form a batch, and the 

processing timeof a batch is equal to the longest 

processing time of the jobs among this batch. 
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Preemption is not allowed. That is, once the 

processing of a batch starts on a machine, this 

machine is occupied until this process is completed. 

The load iL  for machine ( 1 2 )iM i m     is 

defined to be the sum of the processing time of the 

batches assigned to it. The goal is to minimize the sum 

of squared machine loads. This problem arises e.g. 

when placing a set of records on a sectored drum so as 

to minimize the average latency time (Cody and 

Coffman (1976)) and in other storage allocation 

problems (Chandra and Wong (1975)). Following the 

notation of Graham et al. (1979), this problem may be 

denoted by 2

1

m

m i
i

P p batch B n L


     . 

Related work: Many results appear concerning the 

problem discussed in this paper. Chandra and Wong 

(1975) analyzed the LPT  rule for problem 
2

m iP L  and proved a performance guarantee of 
25
24 . This result was slightly improved by Leung and 

Wei (1995). Avidor et al. (2001) showed that LS  

has performance guarantee 4
3 . As for a more general 

problem p
m iP L  (which is equivalent to minimize 

D 
DAVID  PUBLISHING 



Some Discussions on Parallel Bounded Batch Scheduling to Minimize  
the Sum of Squared Machine Loads 

 

61

the pl -norm), Chandra and Wong (1975) showed that 

for every fixed 1p  , the LPT  rule achieved a 

constant approximation ratio whose value depends on 

p  and might be as large as 
3
2 . 

Our contributions: We prove that the problem 

2

1

m

m i
i

P p batch B n L


      is binary NP-hard. 

Moreover, we put forward a PTAS and an FPTAS for 

this problem. Taking into account its complexity, we 

declare that problem 2

1

m

m i
i

P p batch B n L


      has 

been solved completely. 

This paper is organized as follows: In section 2 we 

provide an NP-hardness for problem 

2

1

m

m i
i

P p batch B n L


     . In section 3 a polynomial 

time approximation scheme (PTAS) is presented for 

this problem. In section 4 we propose an FPTAS for 

this problem. In section 5 we give some concluding 

remarks. 

2. An NP-hardness Proof 

In this section, we solve the complexity for problem 
2

1

m

m i
i

P p batch B n L


     . First we give a simple 

property for the optimal schedule. 

Lemma 1. We denote by    the optimal schedule 

to 2

1

m

m i
i

P p batch B n L


     , then the batches in 

   obey the FBLPT rule. 

Proof: For a feasible schedule   violating the 

FBLPT rule, we may adjust it by simple exchanges 

without increasing the objective value. We omit the 

details. 

Theorem 1. Problem 2

1

m

m i
i

P p batch B n L


      

is binary NP-hard. 

Proof: Our proof proceeds by a reduction from the 

binary NP-complete problem PARTITION. 

PARTITION 
Given a set 1 2{ }na a a    of n  positive integers, 

is it possible to partition the index set {1 2 }n    

into two disjoint subsets X  and Y  such that 

j
j X

a A


 , where 1

2

n

j
j

a

A 


 . 

Given an instance of PARTITION, we construct an 

instance of 2

1

m

m i
i

P p batch B n L


      as follows: 

The job set consists of 1n  different job types 

1 2 1n    . Type (1 )i i n   is composed of B  

jobs 1{ }i i BJ ots J    with processing time ia . There 

are ( 2)m B  jobs 1 1 1 ( 2){ }n n m BJ J       with 

processing time A  in type 1n . 

Obviously this instance can be constructed in 

polynomial time. 

In the remainder of the proof, we show that 

PARTITION has a solution if and only if there is a 

schedule for the corresponding instance of the 

scheduling problem with 2 2

1

m

i
i

L mA


 . 

First, suppose that X  and Y  define a solution to 

PARTITION. Consider a schedule with 2n m   

batches that is formed in the following way. The B  

jobs in type (1 )i i n   form a batch, and the 

( 2)m B  jobs in type 1n  are divided into 

2m   batches, each containing exactly B  jobs. 

Each batch from type 1n  is assigned to one 

machine, and there are only two machines ( 1M  and 

2M ) unoccupied. The batches from type (1 )i i n   

with i X  are assigned to machine 1M , while the 

batches remaining are assigned to 2M . Clearly we 

have found a schedule with objective value 2mA . 

Conversely, suppose that there exists a schedule 

with 2 2

1

m

i
i

L mA


 , the optimal value for the 

scheduling instance must be no greater than 2mA . 

We denote by    the optimal schedule for the 

instance. From Lemma 1, the B  jobs in type 
(1 )i i n   form a batch, and the ( 2)m B  jobs in 

type 1n   are divided into ( 2)m  batches in   . 

If we regard each batch as one job, we obtain a 
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feasible schedule 1  for 2

1

m

m i
i

P L


  with objective 

value 2mA  from   . Here the job set is 

1 2 2{ }n mJ J J     , where (1 )i ip a i n   , and 

1 2 2n n n mp p p A       . We denote by 1iL  

the load for machine iM  in 1 . 

Note that 
2

1
1 1

m n m

i i
i i

L p mA
 

 

   , on the other hand, 

we have 2 2

1

m

i
i

L mA


  (the relationship between 

arithmetic and geometric averages). 

Hence we get 2 2

1

m

i
i

L mA


 . This implies 

11 21 1mL L L A    . The index set for jobs 

(1 )iJ i n   that are assigned to the same machine is 

X , and {1 2 }n X Y     . Therefore, 

j X js a A  , which shows that X  and Y  define 

a solution to PARTITION. 

3. A PTAS for 
m

2
m i

i=1

P | p - batch,B < n | L  

In this section, we propose a polynomial time 

approximation scheme for 2

1

m

m i
i

P p batch B n L


     . 

Due to the close relationship between 

2

1

m

m i
i

P p batch B n L


      and 2

1

m

m i
i

P L


 , we 

first give a PTAS for 2

1

m

m i
i

P L


 . 

We denote by 
1

n

sum j
j

p p


   the overall job 

processing time and by 
1
max{ }max j

j n
p p

 
  the length 

of the longest job. The objective value of an optimal 

schedule is denoted by OPT. It is easy to see that for 
2 2max{ }max sumK p p m   , OPT K . 

In the following we transform an arbitrary instance 

I  of 2

1

m

m i
i

P L


  into a simplified instance 1I . First 

the jobs in I  are classified into big jobs and small 

ones. The classification depends on a precision 

parameter (0 1)   . 

Job jJ  is called big if it has processing time 

jp K , else it is called a small one. 

The instance 1I  contains all the big jobs from 

instance I . Let S  denote the sum of the processing 

times over all small jobs in I . Then 1I  contains 

( )S K    jobs of length K  (Intuitively 

speaking, the small jobs in I  are first merged into a 

long job of length S , and then this long job is cut 

into lots of chunks of length K . If the last chunk 

is strictly smaller than K , then we simply 

disregard it). 

We declare that the optimal value 1OPT  for 

instance 1I  is fairly close to the optimal value 

OPT  of instance I . 

To prove this, let (1 )iS i m   be the total size of 

small jobs on machine iM  in an optimal schedule for 

I . We denote by iL  the load of machine iM  in an 

optimal schedule for instance I . We adjust the 

optimal schedule for instance I  as follows: On 

machine iM , leave every big job where it is, and 

replace the small jobs by ( )S K    chunks of 

length K . By assigning the chunks we increase 
the load of machine iM  by at most  

( )

( ( ) 1)

i i

i i

S K K S

S K K S K

 

  

    

   
. 

Since  

1 ( ) ( )

( ) ( )

mS K S K

S K S K

 

 

         
     


, 

the resulting schedule   (or part of it) is a feasible 

schedule for instance 1I . We have 

2 2 2

1 1 1

2 2

1

( ) ( ) ( )

2 (1 2 )

m m m

i i i
i i i

m

i
i

L L K L

K L m K m m OPT

 

   

 

  





   

   

  


 

We conclude that 1 2(1 2 )OPT m m OPT    . 
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It is more easier to solve instance 1I . The total 

processing time of jobs in 1I  is no more than sump , 

and each job in 1I  has length at least K , the 

number of jobs in 1I  is bounded above by 

( )sump tK m    . We may find the optimal 

solution to 1I  by enumeration. The running time is 

( )mO m  . 

The remaining problem is to transform the solution 

back. Consider an optimal schedule 1  for the 

simplified instance 1I . For 1 2i m     we denote 

by 1iL   the load of machine iM  in 1 , by 1iB   

the total size ofbig jobs on iM , and by 1iS   the total 

size of the chunks with length K . Obviously we 

have 1 1 1i i iL B S    . 

We construct the following schedule   for I : 

Each big job is placed on the same machine as in 1 . 

We reserve an interval of length 1 2iS K   on 

machine iM . We then greedily put the small jobs into 

these reserved intervals: First we start packing small 

jobs into the reserved interval on iM , until we meet 

some small job that does not fit in any more. We then 

turn to machine 2M , and so on. 

Since the size of a small job is at most K , the 

total size of the packed small jobs on machine 

(1 )iM i m   is at least 1iS K  . From 

1
1

m

i
i

S S K


  , we can pack all the small jobs into 

these reserved intervals. 

The load of machine iM  in   is at most 

1 2iL K  , so we have 

2 2
1

1 1

1 2
1

1

1 2

2

( ) ( 2 )

4 4

(4 4 )

(1 6 5 )

m m

i i
i i

m

i
i

L L K

OPT K L Km

OPT m m K

m on m OPT

 

 

 




 




  

  

  

 

 

 . 

The objective value of   is within a 1 ( )O   

factor of the optimal objective value. We have reached 

the desired PTAS for 2

1

m

m i
i

P L


 . 

In summary, the PTAS for 2

1

m

m i
i

P L


  may be 

stated as follows: 

Algorithm 1 

Step 1: Transform an instance I  of 2

1

m

m i
i

P L


  

into a simplified instance 1I . 

Step 2: Obtain the optimal schedule for 1I  by 

enumeration. 

Step 3: Treat the optimal schedule for 1I  by 

greedy algorithm and output a schedule for I . 

From Lemma 1, we obtain a PTAS for problem 

2

1

m

m i
i

P p batch B n L


     . 

Algorithm 2 
Step 1: Apply the FBLPT rule to an instance I  of 

2

1

m

m i
i

P p batch B n L


     . Regard each batch as a 

job and obtain an instance 1I  of 2

1

m

m i
i

P L


 . 

Step 2: Apply Algorithm 1 to the instance 1I  and 

output a schedule for 1I . 

The running time of Algorithm 2 is 

( )mO nlogn m  . 

4. An FPTAS for 
m

2
m i

i=1

P | p - batch,B < n | L  

Due to the close relationship between 

2

1

m

m i
i

P p batch B n L


      and 2

1

m

m i
i

P L


 , we first 

give an FPTAS for the latter. 

In an instance I  of 2

1

m

m i
i

P L


 , there are n  jobs 

( 1 2 )jJ j n     with processing time jp , and the 

goal is to find a schedule that minimizes the sum of 

squared machine loads. Denote by 
1

n

sum j
j

p p


  . 

Observe that the size I   of the input I  satisfies 

log( ) ln( )sum sumI p const p    . 

We encode a feasible schedule   with load iL  

for machine 
iM  by a m-dimensional vector 
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1 2[ ]mL L L   . We first give a pseudo-polynomial 

time algorithm for problem 2

1

m

m i
i

P L


 . 

Algorithm A 

Initialization: Set 

1 1 1 1{[ 0 0] [0 0] [0 0 ]}VS p p p                . 

Phase k. For every vector 1 2[ ]mx x x    in 

1kVS  , put the m  vectors 

1 2 1 2

1 2

[ ] [ ]

[ ]
k m k m

m k

x p x x x x p x

x x x p

         

    

 
 

 

in kVS . 

Output. Output the vector 1 2[ ]m nx x x VS     that 

minimizes the value 2

1

m

i
i

x

 . 

Since the coordinates of all vectors in all sets kVS  

are integers in the range from 0  to sump , the 

cardinality of every vector set kVS  is bounded from 

above by ( )m
sumO p . Since the time complexity of the 

algorithm is proportional to 
1

n

k
k

VS


  , the algorithm 

has a pseudo-polynomial time complexity of 

( )m
sumO np . 

To reduce the running time for the algorithm, we 

take the following steps: Each feasible schedule 

corresponds to a geometric point in the m-dimensional 

geometric body [0 ] [0 ] [0 ]sum sum sump p p      . We 

subdivide this geometric body with cuts into lots of 

boxes. In each direction these cuts are made at the 
coordinates i  for 1 2i L     where 

21 n
  , and 

2log ( ) ln( ) ln( ) (1 ) ln( ) .n
sum sum sumL p p p              

  The last inequality holds since for all 1z   we 
have ln ( 1)z z z    (which may be seen from the 

Taylor expansion of ln z ). 

Note that for any two vectors 1[ ]mx x   and 

1[ ]my y   falling into the same box, their 

coordinates satisfy   ( 1 2 )i i ix y x i m         . 

We now give the main idea for the trimmed 

algorithm: Out of every box that has nonempty 

 

intersection with kVS  we select a single vector and 

put it into the so-called trimmed vector set kVS . All 

remaining vectors from the vector set kVS  that have 

not been selected are lost for the further computations. 

And in phase 1k  , the so-called trimmed algorithm 

generates its new vector from the smaller set kVS , 

and not from the set kVS . 

What is the time complexity of the trimmed 

algorithm? The trimmed vector set kVS  contains at 

most one vector from each box in the subdivision. 

Altogether there are ( )mO L  boxes, the cardinality of 

kVS  is polynomial in the input size I   and also 

polynomial in 1  . And since the time complexity of 

the trimmed algorithm is proportional to 
1

n

k
k

VS



  , 

the trimmed algorithm has a time complexity that is 

polynomial in the input size and in 1  . 

We can prove by induction that for each vector 

1[ ]m kx x VS   , there is a vector 1[ ]m kx x VS      

whose coordinates are at most a factor of k  above 
the corresponding coordinates of 1[ ]mx x  . (The 

coordinates of the new vectors are non-negative linear 

combinations of the coordinates of the old vectors, 

and it is the crucial property that makes the inductive 

argument go through.) 

We claim that the trimmed algorithm outputs a 

near-optimal schedule for problem 2

1

m

m i
i

P L


 . At the 

end of its execution, the untrimmed algorithm outputs 

a vector 1[ ]m nx x VS    that minimizes the value 
2

1
m
i im x . By the above argument, there exists a 

1[ ]m nx x VS      satisfying 2(1 )n n
i i inx x x    

(1 ) ( 1 2 )ix i m      . 

The last inequality holds from the well-known 

inequality (1 ) (1 2 )nz n z     for 0 1z  . 

So we have 2 2 2

1 1

( ) (1 ) (1 3 )
m m

i i
i i

x x OPT 

 

     . 

We are ready to give an FPTAS for problem 

2

1

m

m i
i

P L


 . 
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Trimmed Algorithm B 

Step 1: Set 0 {[0 0 0]}VS     . 

Step 2: For 1k   to n  do 

Step 3: Let kVS   

Step 4: For every 1 1[ ]m kx x VS
    do 

Step 5: Put the m  vectors 1 2[ ]k mx p x x      

1 2[ ]m kx x x p       in kVS . 

Step 6: Endfor 

Step 7: Compute a trimmed copy kVS 
 of kVS  

Step 8: Endfor 

Step 9: Output the vector 1 2[ ]m nx x x VS      

that minimizes the value 2

1

m

i
i

x

 . 

Following we give an FPTAS for 

2

1

m

m i
i

P p batch B n L


     . 

Algorithm Final 

Step 1: Apply the FBLPT rule to an instance I  of 
2

1

m

m i
i

P p batch B n L


     . Regard each batch as a 

job and obtain an instance 1I  of 2

1

m

m i
i

P L


 . 

Step 2: Apply Trimmed Algorithm B to the instance 

1I  and output a schedule for 1I . 

5. Concluding Remarks 

In this paper we study the problem of scheduling 

n  jobs on m  parallel bounded batch machines to 

minimize the sum of squared machine loads. We 

prove this problem to be NP-hard. Furthermore, we 

present a polynomial time approximation scheme 

(PTAS) and afully polynomial time approximation 

scheme (FPTAS) for this problem. From this sense we 

declare that this problem has been solved completely. 
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