
Journal of Mathematics and System Science 6 (2016) 60-65
doi: 10.17265/2159-5291/2016.02.002

Some Discussions on Parallel Bounded Batch

Scheduling to Minimize the Sum of Squared Machine

Loads

Zengxia Cai, Xianzhao Zhang*

College of Science, Linyi University, Linyi 276005, PR China.

Received: October 04, 2015 / Accepted: November 01, 2015 / Published: February 25, 2016.

Abstract: We study the problem of scheduling n jobs on m parallel bounded batch machines to minimize the sum of squared

machine loads. Each batch contains at most B jobs, and the processing time of a batch is equal to the longest processing time of the
jobs in this batch. We prove this problem to be NP-hard. Furthermore, we present a polynomial time approximation scheme (PTAS)
and a fully polynomial time approximation scheme (FPTAS) for this problem.

Keywords: Scheduling; Parallel batch; Polynomial time approximation scheme; FPTAS

1. Introduction

A batch machine is a machine that can process up to

B jobs simultaneously as a batch. The research on

this model is motivated by burn-in operations in

semiconductor manufacturing (Lee et al. (1992)).

There are two variants of the burn-in model: the

unbounded model, in which there is no upper bound

on the number of jobs that may be processed in the

same batch; and the bounded model, in which at most

B n jobs can be processed in the same batch.

In this paper we study the following problem: We
are given a job set

1 2{ }nJ J J J    . Each job

jJ has a processing time (1 2)jp j n    (jp is

a positive integer), which specifies the minimum time

needed to process this job. All jobs are available at

time 0 . We are also given m identical parallel

batch machines 1 2 mM M M   . At most B n

jobs can be processed at one time on each machine.

The jobs processed together form a batch, and the

processing timeof a batch is equal to the longest

processing time of the jobs among this batch.

Corresponding author: Xianzhao Zhang, College of

Science, Linyi University, Linyi 276005, PR China.

Preemption is not allowed. That is, once the

processing of a batch starts on a machine, this

machine is occupied until this process is completed.

The load iL for machine (1 2)iM i m    is

defined to be the sum of the processing time of the

batches assigned to it. The goal is to minimize the sum

of squared machine loads. This problem arises e.g.

when placing a set of records on a sectored drum so as

to minimize the average latency time (Cody and

Coffman (1976)) and in other storage allocation

problems (Chandra and Wong (1975)). Following the

notation of Graham et al. (1979), this problem may be

denoted by 2

1

m

m i
i

P p batch B n L


     .

Related work: Many results appear concerning the

problem discussed in this paper. Chandra and Wong

(1975) analyzed the LPT rule for problem
2

m iP L and proved a performance guarantee of
25
24 . This result was slightly improved by Leung and

Wei (1995). Avidor et al. (2001) showed that LS

has performance guarantee 4
3 . As for a more general

problem p
m iP L (which is equivalent to minimize

D
DAVID PUBLISHING

Some Discussions on Parallel Bounded Batch Scheduling to Minimize
the Sum of Squared Machine Loads

61

the pl -norm), Chandra and Wong (1975) showed that

for every fixed 1p  , the LPT rule achieved a

constant approximation ratio whose value depends on

p and might be as large as
3
2 .

Our contributions: We prove that the problem

2

1

m

m i
i

P p batch B n L


     is binary NP-hard.

Moreover, we put forward a PTAS and an FPTAS for

this problem. Taking into account its complexity, we

declare that problem 2

1

m

m i
i

P p batch B n L


     has

been solved completely.

This paper is organized as follows: In section 2 we

provide an NP-hardness for problem

2

1

m

m i
i

P p batch B n L


     . In section 3 a polynomial

time approximation scheme (PTAS) is presented for

this problem. In section 4 we propose an FPTAS for

this problem. In section 5 we give some concluding

remarks.

2. An NP-hardness Proof

In this section, we solve the complexity for problem
2

1

m

m i
i

P p batch B n L


     . First we give a simple

property for the optimal schedule.

Lemma 1. We denote by   the optimal schedule

to 2

1

m

m i
i

P p batch B n L


     , then the batches in

  obey the FBLPT rule.

Proof: For a feasible schedule  violating the

FBLPT rule, we may adjust it by simple exchanges

without increasing the objective value. We omit the

details.

Theorem 1. Problem 2

1

m

m i
i

P p batch B n L


    

is binary NP-hard.

Proof: Our proof proceeds by a reduction from the

binary NP-complete problem PARTITION.

PARTITION
Given a set 1 2{ }na a a   of n positive integers,

is it possible to partition the index set {1 2 }n  

into two disjoint subsets X and Y such that

j
j X

a A


 , where 1

2

n

j
j

a

A 


 .

Given an instance of PARTITION, we construct an

instance of 2

1

m

m i
i

P p batch B n L


     as follows:

The job set consists of 1n different job types

1 2 1n    . Type (1)i i n  is composed of B

jobs 1{ }i i BJ ots J   with processing time ia . There

are (2)m B jobs 1 1 1 (2){ }n n m BJ J      with

processing time A in type 1n .

Obviously this instance can be constructed in

polynomial time.

In the remainder of the proof, we show that

PARTITION has a solution if and only if there is a

schedule for the corresponding instance of the

scheduling problem with 2 2

1

m

i
i

L mA


 .

First, suppose that X and Y define a solution to

PARTITION. Consider a schedule with 2n m 

batches that is formed in the following way. The B

jobs in type (1)i i n  form a batch, and the

(2)m B jobs in type 1n are divided into

2m  batches, each containing exactly B jobs.

Each batch from type 1n is assigned to one

machine, and there are only two machines (1M and

2M) unoccupied. The batches from type (1)i i n 

with i X are assigned to machine 1M , while the

batches remaining are assigned to 2M . Clearly we

have found a schedule with objective value 2mA .

Conversely, suppose that there exists a schedule

with 2 2

1

m

i
i

L mA


 , the optimal value for the

scheduling instance must be no greater than 2mA .

We denote by   the optimal schedule for the

instance. From Lemma 1, the B jobs in type
(1)i i n  form a batch, and the (2)m B jobs in

type 1n  are divided into (2)m batches in   .

If we regard each batch as one job, we obtain a

Some Discussions on Parallel Bounded Batch Scheduling to Minimize
the Sum of Squared Machine Loads

62

feasible schedule 1 for 2

1

m

m i
i

P L


 with objective

value 2mA from   . Here the job set is

1 2 2{ }n mJ J J     , where (1)i ip a i n   , and

1 2 2n n n mp p p A       . We denote by 1iL

the load for machine iM in 1 .

Note that
2

1
1 1

m n m

i i
i i

L p mA
 

 

   , on the other hand,

we have 2 2

1

m

i
i

L mA


 (the relationship between

arithmetic and geometric averages).

Hence we get 2 2

1

m

i
i

L mA


 . This implies

11 21 1mL L L A    . The index set for jobs

(1)iJ i n  that are assigned to the same machine is

X , and {1 2 }n X Y     . Therefore,

j X js a A  , which shows that X and Y define

a solution to PARTITION.

3. A PTAS for 
m

2
m i

i=1

P | p - batch,B < n | L

In this section, we propose a polynomial time

approximation scheme for 2

1

m

m i
i

P p batch B n L


     .

Due to the close relationship between

2

1

m

m i
i

P p batch B n L


     and 2

1

m

m i
i

P L


 , we

first give a PTAS for 2

1

m

m i
i

P L


 .

We denote by
1

n

sum j
j

p p


  the overall job

processing time and by
1
max{ }max j

j n
p p

 
 the length

of the longest job. The objective value of an optimal

schedule is denoted by OPT. It is easy to see that for
2 2max{ }max sumK p p m   , OPT K .

In the following we transform an arbitrary instance

I of 2

1

m

m i
i

P L


 into a simplified instance 1I . First

the jobs in I are classified into big jobs and small

ones. The classification depends on a precision

parameter (0 1)   .

Job jJ is called big if it has processing time

jp K , else it is called a small one.

The instance 1I contains all the big jobs from

instance I . Let S denote the sum of the processing

times over all small jobs in I . Then 1I contains

()S K   jobs of length K (Intuitively

speaking, the small jobs in I are first merged into a

long job of length S , and then this long job is cut

into lots of chunks of length K . If the last chunk

is strictly smaller than K , then we simply

disregard it).

We declare that the optimal value 1OPT for

instance 1I is fairly close to the optimal value

OPT of instance I .

To prove this, let (1)iS i m  be the total size of

small jobs on machine iM in an optimal schedule for

I . We denote by iL the load of machine iM in an

optimal schedule for instance I . We adjust the

optimal schedule for instance I as follows: On

machine iM , leave every big job where it is, and

replace the small jobs by ()S K   chunks of

length K . By assigning the chunks we increase
the load of machine iM by at most

()

(() 1)

i i

i i

S K K S

S K K S K

 

  

    

   
.

Since

1 () ()

() ()

mS K S K

S K S K

 

 

         
     


,

the resulting schedule  (or part of it) is a feasible

schedule for instance 1I . We have

2 2 2

1 1 1

2 2

1

() () ()

2 (1 2)

m m m

i i i
i i i

m

i
i

L L K L

K L m K m m OPT

 

   

 

  





   

   

  



We conclude that 1 2(1 2)OPT m m OPT    .

Some Discussions on Parallel Bounded Batch Scheduling to Minimize
the Sum of Squared Machine Loads

63

It is more easier to solve instance 1I . The total

processing time of jobs in 1I is no more than sump ,

and each job in 1I has length at least K , the

number of jobs in 1I is bounded above by

()sump tK m    . We may find the optimal

solution to 1I by enumeration. The running time is

()mO m  .

The remaining problem is to transform the solution

back. Consider an optimal schedule 1 for the

simplified instance 1I . For 1 2i m    we denote

by 1iL  the load of machine iM in 1 , by 1iB 

the total size ofbig jobs on iM , and by 1iS  the total

size of the chunks with length K . Obviously we

have 1 1 1i i iL B S    .

We construct the following schedule  for I :

Each big job is placed on the same machine as in 1 .

We reserve an interval of length 1 2iS K  on

machine iM . We then greedily put the small jobs into

these reserved intervals: First we start packing small

jobs into the reserved interval on iM , until we meet

some small job that does not fit in any more. We then

turn to machine 2M , and so on.

Since the size of a small job is at most K , the

total size of the packed small jobs on machine

(1)iM i m  is at least 1iS K  . From

1
1

m

i
i

S S K


  , we can pack all the small jobs into

these reserved intervals.

The load of machine iM in  is at most

1 2iL K  , so we have

2 2
1

1 1

1 2
1

1

1 2

2

() (2)

4 4

(4 4)

(1 6 5)

m m

i i
i i

m

i
i

L L K

OPT K L Km

OPT m m K

m on m OPT

 

 

 




 




  

  

  

 

 

 .

The objective value of  is within a 1 ()O 

factor of the optimal objective value. We have reached

the desired PTAS for 2

1

m

m i
i

P L


 .

In summary, the PTAS for 2

1

m

m i
i

P L


 may be

stated as follows:

Algorithm 1

Step 1: Transform an instance I of 2

1

m

m i
i

P L




into a simplified instance 1I .

Step 2: Obtain the optimal schedule for 1I by

enumeration.

Step 3: Treat the optimal schedule for 1I by

greedy algorithm and output a schedule for I .

From Lemma 1, we obtain a PTAS for problem

2

1

m

m i
i

P p batch B n L


     .

Algorithm 2
Step 1: Apply the FBLPT rule to an instance I of

2

1

m

m i
i

P p batch B n L


     . Regard each batch as a

job and obtain an instance 1I of 2

1

m

m i
i

P L


 .

Step 2: Apply Algorithm 1 to the instance 1I and

output a schedule for 1I .

The running time of Algorithm 2 is

()mO nlogn m  .

4. An FPTAS for 
m

2
m i

i=1

P | p - batch,B < n | L

Due to the close relationship between

2

1

m

m i
i

P p batch B n L


     and 2

1

m

m i
i

P L


 , we first

give an FPTAS for the latter.

In an instance I of 2

1

m

m i
i

P L


 , there are n jobs

(1 2)jJ j n    with processing time jp , and the

goal is to find a schedule that minimizes the sum of

squared machine loads. Denote by
1

n

sum j
j

p p


  .

Observe that the size I  of the input I satisfies

log() ln()sum sumI p const p    .

We encode a feasible schedule  with load iL

for machine
iM by a m-dimensional vector

Some Discussions on Parallel Bounded Batch Scheduling to Minimize
the Sum of Squared Machine Loads

64

1 2[]mL L L   . We first give a pseudo-polynomial

time algorithm for problem 2

1

m

m i
i

P L


 .

Algorithm A

Initialization: Set

1 1 1 1{[0 0] [0 0] [0 0]}VS p p p                .

Phase k. For every vector 1 2[]mx x x   in

1kVS  , put the m vectors

1 2 1 2

1 2

[] []

[]
k m k m

m k

x p x x x x p x

x x x p

         

    

 
 

in kVS .

Output. Output the vector 1 2[]m nx x x VS    that

minimizes the value 2

1

m

i
i

x

 .

Since the coordinates of all vectors in all sets kVS

are integers in the range from 0 to sump , the

cardinality of every vector set kVS is bounded from

above by ()m
sumO p . Since the time complexity of the

algorithm is proportional to
1

n

k
k

VS


  , the algorithm

has a pseudo-polynomial time complexity of

()m
sumO np .

To reduce the running time for the algorithm, we

take the following steps: Each feasible schedule

corresponds to a geometric point in the m-dimensional

geometric body [0] [0] [0]sum sum sump p p      . We

subdivide this geometric body with cuts into lots of

boxes. In each direction these cuts are made at the
coordinates i for 1 2i L    where

21 n
  , and

2log () ln() ln() (1) ln() .n
sum sum sumL p p p              

 The last inequality holds since for all 1z  we
have ln (1)z z z   (which may be seen from the

Taylor expansion of ln z).

Note that for any two vectors 1[]mx x  and

1[]my y  falling into the same box, their

coordinates satisfy (1 2)i i ix y x i m         .

We now give the main idea for the trimmed

algorithm: Out of every box that has nonempty

intersection with kVS we select a single vector and

put it into the so-called trimmed vector set kVS . All

remaining vectors from the vector set kVS that have

not been selected are lost for the further computations.

And in phase 1k  , the so-called trimmed algorithm

generates its new vector from the smaller set kVS ,

and not from the set kVS .

What is the time complexity of the trimmed

algorithm? The trimmed vector set kVS contains at

most one vector from each box in the subdivision.

Altogether there are ()mO L boxes, the cardinality of

kVS is polynomial in the input size I  and also

polynomial in 1  . And since the time complexity of

the trimmed algorithm is proportional to
1

n

k
k

VS



  ,

the trimmed algorithm has a time complexity that is

polynomial in the input size and in 1  .

We can prove by induction that for each vector

1[]m kx x VS   , there is a vector 1[]m kx x VS    

whose coordinates are at most a factor of k above
the corresponding coordinates of 1[]mx x  . (The

coordinates of the new vectors are non-negative linear

combinations of the coordinates of the old vectors,

and it is the crucial property that makes the inductive

argument go through.)

We claim that the trimmed algorithm outputs a

near-optimal schedule for problem 2

1

m

m i
i

P L


 . At the

end of its execution, the untrimmed algorithm outputs

a vector 1[]m nx x VS   that minimizes the value
2

1
m
i im x . By the above argument, there exists a

1[]m nx x VS     satisfying 2(1)n n
i i inx x x    

(1) (1 2)ix i m      .

The last inequality holds from the well-known

inequality (1) (1 2)nz n z    for 0 1z  .

So we have 2 2 2

1 1

() (1) (1 3)
m m

i i
i i

x x OPT 

 

     .

We are ready to give an FPTAS for problem

2

1

m

m i
i

P L


 .

Some Discussions on Parallel Bounded Batch Scheduling to Minimize
the Sum of Squared Machine Loads

65

Trimmed Algorithm B

Step 1: Set 0 {[0 0 0]}VS     .

Step 2: For 1k  to n do

Step 3: Let kVS 

Step 4: For every 1 1[]m kx x VS
   do

Step 5: Put the m vectors 1 2[]k mx p x x    

1 2[]m kx x x p      in kVS .

Step 6: Endfor

Step 7: Compute a trimmed copy kVS 
 of kVS

Step 8: Endfor

Step 9: Output the vector 1 2[]m nx x x VS    

that minimizes the value 2

1

m

i
i

x

 .

Following we give an FPTAS for

2

1

m

m i
i

P p batch B n L


     .

Algorithm Final

Step 1: Apply the FBLPT rule to an instance I of
2

1

m

m i
i

P p batch B n L


     . Regard each batch as a

job and obtain an instance 1I of 2

1

m

m i
i

P L


 .

Step 2: Apply Trimmed Algorithm B to the instance

1I and output a schedule for 1I .

5. Concluding Remarks

In this paper we study the problem of scheduling

n jobs on m parallel bounded batch machines to

minimize the sum of squared machine loads. We

prove this problem to be NP-hard. Furthermore, we

present a polynomial time approximation scheme

(PTAS) and afully polynomial time approximation

scheme (FPTAS) for this problem. From this sense we

declare that this problem has been solved completely.

References

[1] Avidor, A., Azar, Y., Sgall, J., Ancient and new

algorithms for load balancing in the pl norm,

Algorithmica 29 (2001) 422-441.

[2] Chandra, A.K., Wong, C.K., Worst-case analysis of a

placement algorithm related to storage allocation, SIAM

Journal on Computing 4 (1975) 249-263.

[3] Cody, R.A., Coffman, E.G., Record allocation for

minimizing expected retrieval costs on drum-like storage

devices, Journal of ACM 23 (1976) 103-115.

[4] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan,

A.H.G., Optimization and approximation in deterministic

sequencing and scheduling: A survey, Annals of Discrete

Mathematics 5 (1979) 287-326.

[5] Lee, C.Y., Uzsoy, R., Martin Vega, L.A., Efficient

algorithms for scheduling semiconductor burn-in

operations, Operations Research 40 (1992) 764-775.

[6] Leung, J.Y.T., Wei, W.D., Tighter bounds on a heuristic

for a partition problem, Information Processing Letters 56

(1995) 51-57.

