
Journal of Communication and Computer 12 (2015) 184-190
doi: 10.17265/1548-7709/2015.04.004

Towards a New Framework for Building a Whole
User-Defined System from a Colored Petri Networks

Zeddari Abderrazzak and Ettalbi Ahmed
1. Models and Systems Engineering Team, Mobile and Embedded Information Systems Laboratory, National Higher School of

Computer Science and Systems Analysis, Mohammed-V University, PB 713, Rabat , Morocco

2. Models and Systems Engineering Team, Mobile and Embedded Information Systems Laboratory, Software Engineering

Department, National High School of Computer Science and Systems Analysis, Mohammed-V University, PB 713, Rabat , Morocco

Abstract: In this paper we provide a discussion of designing a new Framework for building a whole system from a colored Petri
Network. This framework will integrate the translation process of a multiview class to a colored Petri network developed in in our
last research. With two examples, we will extend this process by using fields, methods and access control. The advantages of using
colored Petri networks compared to ordinary ones are also discussed as well as our new framework design.

Key words: UML, view and viewpoint, modelling, Petri networks, colored Petri nets, validation rules.

1. Introduction

The concept of a multiview system comes with
model that can design solutions to problems based on
the needs and skills of users, not otherwise. This will
help the end-users to be more effective and learn the
new system faster, because the used tools are based on
how they do their work. This new approach allows
engineers and clients to implement new kinds of
design methods and techniques that adapt to the
specific needs of the workers.

The multiview system concept offers many features
such as the multiview class [1], whose goal is to store
and deliver information according to users’ viewpoint.
It supports the dynamic change of viewpoint and
offers mechanism to describe view dependencies.

In the next sections of this paper, we will discuss
the following points that allow us to add more features
to our approach developed in Ref. [2]:

 Including methods with the access right of
Read/Update in the translation process;

Corresponding author: Ahmed Ettalbi, professor, research

fields: web services, software architecture, business modeling,
models and services, cloud computing. E-mail:
ettalbi1000@gmail.com.

 Discussing the Petri Nets properties that are used
during the analysis and validation phases;

 Discussing our new Framework which allows
generating a whole system from the obtained colored
Petri Networks.

2. CPN Translation Appraoch

2.1 Multiview Class Diagram

First, we begin by defining a class diagram and its
component. In Ref. [3], a class diagram denotes a set
of objects with common features. A class is a simple
rectangle divided into three parts. The first part
contains the name of the class, which has to be unique
in the whole diagram. The second part contains the
attributes of the class, each denoted by a name,
possibly followed by the multiplicity, and with an
associated type for the attribute values. The third part
contains the operations of the class, namely, the
methods associated to the objects of the class. The
second and the third part are optional.

2.2 Approach

In Ref. [2], we defined an approach of translating a

D
DAVID PUBLISHING

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

185

multi-view class to a colored Petri Networks based on
three steps. In this paper, we will develop more this
procedure. We will translate a whole class containing
fields and methods. Also, we will focus on the
dynamic behavior of this process by implementing the
access control (Read/Update) and Authorization on
our new Petri networks.

Step 1: Defining Domain Color and Places
At every viewpoint, we associate a colored token

and two places:
 VPDA: deactivated state of Viewpoint I;
 VPAC: activated state of Viewpoint I.

At each view, we associate two colored tokens:
 Vread corresponds to a View in the read state;
 Vwrite corresponds to a View in the write state.

Step 2: Arcs and Functions
At each arc, we associate a function to determine

instances of tokens (views) necessary, activated and
deactivated in crossing a transition.

Step 3: TRANSITIONS
At each ViewPoint, we associate two transitions:
 AVP: the event Activate Viewpoint I;
 DVP: the event Deactivate Viewpoint i.

For access controls, we define a transition:
 AUTH: the Authorization event check.

INITIAL STATE
Initially, all viewpoints are deactivated. Place

VPDA contains all colors; the other places do not
contain any color.

Below, we apply our approach on two examples.
The first one is used in Ref. [1] and corresponds to a
multiview class car while the second example
corresponds to a multiview class Software.

2.3 Application Examples

Multiview Class Car
In Ref. [2], an example of modelling a multiview

class Car using Colored Petri Network has been
developed.

This class includes the following fields:
Ref: String, represent car reference

Brand: String, represent the car brand
Color: String, represent car color
Fuel: String, represent the car fuel
Consumption: Real, represent the consumption of

the car
Discount: real, the discount in the price of the car
SellingPrice: real, represent the selling price of the car
Recommended Price: Real, recommended price and

the following methods:
ShowInfo():Void, to show car information's.
ModifyInfo():Object Car, return the modified car.
RegisterFailure():Object, return the saved record.
RepairFailure():Object, return the saved record.
AnswerProposal():Object, return the saved record.
OfferPrice(): Object, return the saved record.
This class supports three viewpoints: that of the

Client, another associated with the Commercial and
the third is related to the Mechanic.

Table 1 shows the fields accessible for each user
according to his views.

In Table 2, we present the views of the class Car.
Five views can be distinguished: V1, V2, V3, V4 and
V5. Each view contains fields. The views are then
grouped to give point of views.

In Table 3, we present for each viewpoint, the
views composing it.

Vw: View with Write state.
Vr: View with Read state only.
Multiview Class Software

Table 1 Accessible fields for each viewpoint.
Client Commercial Mechanic
Ref Ref Ref
brand brand brand
Color color color
Fuel fuel fuel
consumption consumption consumption
discount discount ShowInfo()
Selling Price Selling Price ModifyInfo()
ShowInfo() Recommended Price Register Failure()
Offer Price() ShowInfo() Repair Failure()
 ModifyInfo()
 Answer Proposal()

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

186

Table 2 Views related to the class Car.
V1 V2 V3 V4 V5
Ref discount Recomm_endedPrice Modify_Info() Register_Failure()
brand SellingPrice Answer_Proposal() RepairFailure()
color ShowInfo()
fuel
consumption
ShowInfo()

Table 3 Composition of viewpoints in terms of views.
VP1: Mechanic VP2: Client VP3: Commercial
V1w+V5w V1r+V2r V1w+V2w+V3w+V4w

Fig. 1 Colored Petri network associated with the multiview class Car using CPNTool 4.

Fig. 2 Multiview class software.

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

187

The next figure shows the fields and the method of
the class software:

This class supports three viewpoints: that of the
customer, another associated with the Developer and
the third is related to the Manager.

Table 4 shows the fields accessible for each user
according to his views.

In Table 5, we present the views of the class

Software. Four views can be distinguished:
V1, V2, V3 and V4. Each view contains fields.
The views are then grouped to give point of
views.

In Table 6, we present for each viewpoint, the
views composing it.

Vw: View with Write state.
Vr: View with Read state only.

Table 4 Accessible fields for each viewpoint.
Customer Developer Manager
name name name
deadLine deadLine deadLine
documentation documentation documentation
price langage cost
changeDeadLine() updateDocumentation() price
 chooseLangage() changeDeadLine()
 changeCost()

Table 5 Views related to the class software.

V1 V2 V3 V4 V5
name price langage cost Documentation
deadLine changeDeadLine() chooseLangage() changeCost()

upgradeVersion() showVersion()
updateDocmentation()

Table 6 Composition of viewpoints in terms of views.

VP1: Customer VP2: Developer VP3: Manager
V1w+V2w+V5r V1r+V3w+V5w V1w+V2w+V4w+V5r

Fig. 3 Colored Petri network associated with the multiview class Software using CPNTool 4.

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

188

3. Colored Petri Networks Properties
Validation

After translating our system model to a Petri
Network, another step is necessary before we can begin
its use, it is the properties analysis phase [4] and the
problem associated with concurrent systems. Two types
of properties can be found with a Petri-net model:

 Properties which depend on the initial marking;
 Properties which are independent of the initial

marking.
The first type of properties is called behavioral

properties whereas the latter type is called structural
properties. In this paper, we will focus on the
behavioral ones.

3.1 Behavioral Properties

(1) Reachability
The reachability problem for Petri nets is to decide,

given a Petri net N and a marking M, whether,
. Clearly, this is a matter of walking the

reachability graph, until either we reach the requested
marking or we know it can no longer be found. So a
marking Mn is said to be reachable from Mo if there
exists a sequence of firings that transforms Mo to Mn,
the reachability graph is generally infinite, and it is not
easy to determine when it is safe to stop.

In fact, this problem was shown to be hard [5] years
before it was shown to be decidable at all [6].
Researches continue to find methods to do it efficiently
[7].

(2) Liveness
The concept of liveness [4] is closely related to the

complete absence of deadlocks in operating systems. A
Petri Net (N, M0) is said to be live (or equivalent M0 is
said to be live marking for N) if, no matter what
marking has been reached from M0, it is possible to
ultimately fire any transition of the net by progressing
through some further firing sequence.

(3) Boundedness
A place in Petri net is called k-bounded if it does not

contain more than k tokens in all reachable markings,
including the initial marking; it is said to be safe if it is
1-bounded; it is bounded if it is k-bounded for some k.

A (marked) Petri net is called k-bounded, safe, or
bounded when all of its places are. A Petri net (graph)
is called (structurally) bounded if it is bounded for
every possible initial marking.

Note that a Petri net is bounded if and only if its
reachability graph is finite.

(4) Faireness
In Ref. [4], two different types of fairness have

been proposed:
 Bounded-fairness;
 Global-fairness.

In Ref. [8], A PN is fair when the firing of any
transition more than a given number of times is a
sufficient condition for all the transitions in the net to
have fired. When the PN is fair, no process in the
system can be stared.

4. The New Framework

4.1 Framework Presentation

In Ref. [9], the MDA (model-driven architecture) is
defined as an architecture that provides methods for
software development that use models to describe the
system to be built. These models provide a description
that can be expressed at various levels of abstraction,
with each level emphasizing certain viewpoints of the
system.

The driving force behind the MDA is the fact that a
software system will eventually be deployed to one or
more platforms, used separately or together. Platforms
are subject to change over time and they change at
different, typically higher, rates than the higher-level
models of the system, which in turn tend to grow
increasingly independent of the target platforms.

Our aim is to design and develop a new framework
that will follow the MDA architectures and will allow
building a whole system (Web Apps, client Apps, Web
Site ...) from a model.

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

189

Thus if our model changes the generated system will
also change according to user needs.

This framework is within the scope of the agility,
exactly in the scope of the rapid application
development (RAD, Scrum), and will add more
features to these methods exactly in a cloud computing
context.

The innovation of this framework can be
summarized in two ways:

 Including the notion of viewpoint in this process,
to get a multiview system from one model;

 Including a new process of code generation from
a Petri network to ensure application on all high level
Petri networks not only colored ones.

The design of this framework can be achieved by
following defined steps. These steps will be detailed in
the next section.

4.2 Framework Design

Our framework can be designed as follow:
1. Analysis and validation of the obtained Petri

Nets;
2. Generating the PNML (Petri Network markup

language) code;
3. Generating SQL Database script from the

generated PNML code;
4. Reverse the relational database to get DAO layer;
5. Generating the whole system.
 Generating the service layer
 Generating the GUI layer

4.2.1 Analysis and validation
This step can be achieved by verifying that the

obtained Petri Net complies with the properties defined
above (Reachability, Liveness, Boundedness...).
Similarly we can use the CPNTools to perform a
complete simulation during the analysis and validation
phases.

4.2.2 Generating Petri Network Markup Language
The PNML is a proposal of an XML-based

interchange format for Petri Nets. Originally, the
PNML was intended to serve as a file format for the

Java version of the Petri Net Kernel. But, it turned out
that currently several other groups are developing an
XML-based interchange format too. So, the PNML is
only one contribution to the ongoing discussion and to
the standardization efforts of an XML-based format.

In Ref. [10], the author cited that the PNML is
finally adopted as ISO/IEC 15909-2, it was a result of
the annual ‘Petri Net Conference’ in Aarhus.

Once the PNML is defined and standardized, it will
be adopted to generate our Petri Network as a list of
instruction code that can inform the Sql statements for
database creation.

4.2.3 PNML to SQL
As the title above suggests, this step allows getting

a valid SQL script to create our database that will be
used in the reverse engineering process; this work is
still an issue for future research.

4.2.4 Generating the whole system
In this step, we will use a list of standards

framework such as:
 Spring Row
 Hiberante
 Eclipse
 Etc …

The advantages of using this standards frameworks
is to guarantee that there will be no bugs or probleme
in the generated system. Adequate support and
documentation is also available.

5. Conclusion and Perspectives

In this paper, we have presented a design for a new
Framework, whose aim is to add more features in the
Rapid Application development process by including
user viewpoint and linking all the system architecture
with the original user model. Thus the whole system
will be driven by this model.

Our perspective is developing an eclipse plug-in for
our framework design. This plug-in will help the user
to get the whole generated system in a few minute.

References
[1] Gregut, X., Ebersold, S., Nassaret, M., and Coulette, B.

Towards a New Framework for Building a Whole User-Defined System from a Colored Petri Networks

190

2005. “Design Pattern for Code Generation in VUML.”
ENSEEIHT/Irit, Univ. Toulouse/GRIMM, Univ. Moulay
Ismail/ENSAM.

[2] Abderrazzak, Z., and Ahmed, E. 2013. “Using Colred
Petri Network in Modeling Multiview Class.” IJCSNS
International Journal of Computer Science and Network
Security 13 (August).

[3] Berardi, D., Calvanese, D., and Giacomoa, G. D. 2005.
“Reasoning on UML Class Diagrams.” Dipartimento di
Informatica e Sistemistica, Universita di Roma “La
Sapienza”, Via Salaria 113, I-00198 Roma, Italy.

[4] Murata, T. 1989. “Petri Nets: Properties, Analysis and
Application.” April.

[5] Lipton, R. 1976. The Reachability Problem Requires
Exponential Space. Technical Report 62, Yale University.

[6] Mayr, E. W. 1984. “An Algorithm for the General Petri
net Reachability Problem.” SIAM Journal of Computing
13 (3): 441-59.

[7] Kungas, P. 2005. “Petri Net Reachability Checking Is
Polynomial with Optimal Abstraction Hierarchies.” In
Proceedings of the 6th International Symposium on
Abstraction, Reformulation and Approximation, SARA,
Airth Castle, Scotland, UK, July 26-9.

[8] Kungas, P. 1989. “On Fairness and Conflicts in Petri
Nets.” In Proceedings of the 32nd Midwest Symposium
on Circuits and Systems.

[9] Mellor, S. J., Scott, K., Uhl, A., and Weise, D. 2002.
“Advances in Object-Oriented Information Systems.” In
Proceedings of OOIS 2002 Workshops, Montpellier,
France.

[10] Hillah, L. M., Kindler, E., Kordon, F., Petrucci, L., and
Treves, N. 2009. “A Primer on the Petri Net Markup
Language and ISO/IEC 15909-2.” Petri Net Newsletter
76: 9-28, October (originally presented at the 10th
International workshop on Practical Use of Colored Petri
Nets and the CPN Tools –CPN’09.

