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Abstract: This paper deals with an innovative low-loss AC switch, named as TBBS (transistor based bidirectional switch), based on 
the association of super-gain BJTs developed by the GREMAN laboratory. The main characterization results of the super-gain BJT are 
reminded to identify the key parameters that are essential to build the TBBS. A complete characterization database in static mode of this 
new AC switch is discussed. In particular, its forward and reverse-biased features have been measured to see the evolution of the DC 
current gain as a function of the current density. The TBBS makes sense when using the super-gain BJT (bipolar junction transistor) in 
reverse mode. It means that the reverse DC current gain has to be sufficient (at least higher than 1 compared with the conventional BJT 
one). This new AC switch is bidirectional in current and voltage, totally controllable (turn-on and turn-off) and the most attractive 
solution in terms of on-state power losses. Further, its manufacturing process is as easier as existing device such as triac. 
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1. Introduction 

The efficient management of energy consumption is 

always a priority in the development of power 

electronics [1, 2]. Due to the constant rise of the fossil 

energy price and the greenhouse effect caused by the 

emission of CO2, more and more attention is drawn to 

solving this problem. 

Recent studies have highlighted that the household 

appliances (fridges, lighting systems, air-conditioners, 

televisions, computers …) represent a great part of the 

electrical energy consumption [3, 4]. For example, 

statistical studies show that 37% of the total electricity 

production in USA is consumed by domestic 

applications and 43% in France [5]. 

The efficient management of electrical energy can 

be achieved by the application of intelligent grid and 

the realization of smart buildings [6]. The approach of 
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these solutions requires the replacement of 

conventional mechanical and electromechanical 

switches embedded in walls by performing power 

electronic devices. In particular, it means that these 

devices must have low conduction power dissipation 

and be controllable in both on and off-states since they 

are connected to the AC mains. The achievement of 

this goal needs to propose innovative AC switch 

structures based on high performances (more efficient 

and more reliable) electronic components. 

The GREMAN laboratory has recently developed a 

new super-gain BJT (bipolar junction transistor) 

following the requirements described previously [7]. 

Compared with standard BJT structures, several physical 

improvements have been made to obtain a super-gain 

(higher than 100) and low saturation voltage (lower than 

0.3 V) which leads to low consumption in on-state [8]. 

In the following of this paper, the physical structure 

and the main characterization results of the 5 A, 600 V, 

super-gain BJT are reminded. The results are 

particularly compared with conventional marketed BJT 
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to highlight the advantages of this new power device. 

Then, an innovative low-loss AC switch is proposed, 

based on the association of the basic super-gain BJT 

unit. A complete characterization database in static 

mode (forward and reverse-biased) is discussed. This 

new device points the way towards energy efficiency 

switch dedicated to domestic applications. 

2. Context Reminder and New AC Switch 
Proposal 

2.1 State-of-the-Art on AC Switching Solutions 

After decades of development, there have existed 

several AC switch solutions on the market [9]. These 

solutions are listed in Table 1 with their own 

advantages (+) and drawbacks (-). 

A comparison on on-state power dissipation, 

controllability (both turn-on and turn-off) and price is 

proposed respectively for each solution. 

The use of two SCRs (silicon controlled rectifiers) 

connected in antiparallel enable low on-state power 

dissipation (about 1 W/A) because of the low voltage 

drop of each thyristor ( ൎ 1 V). It is also a very 

completive AC switch solution in terms of price. The 

main drawback of this AC switch is its controllability 

and particularly, during the turn-off. Indeed, thyristor 

conducts when its gate receives a current trigger and 

continues to conduct while it is forward biased. The 

turn-off of thyristor relies only on reversal current. 

That means the device cannot be turned-off using an 

external drive circuit which makes it difficult to apply 

for DC current. The same problem exists for triac 

(triode for alternating current) since this power 

component is based on the association in antiparallel of 

two SCRs. Diode bridge/IGBT and IGBTs/diodes are 

controllable in on and off-states, but the application of 

power diodes makes them less competitive in terms of 

conduction losses. The total voltage drop of its 

structure (Power diodes + controllable switch) can 

achieve 2 V, which means the on-state power 

dissipation could reach 2 W/A. The use of 

SJ-MOSFET/Diodes to build AC switching is not 

suitable for power applications, because its price 

become unacceptable when the active area of 

SJ-MOSFET is expanded. 

2.2 Super-gain BJT Concept and Main Experimental 

Results Reminder 

The drawbacks of the existing AC switch solutions 

highlighted previously prompt the GREMAN 

laboratory to propose a new AC switch solution 

dedicated to efficient energy applications. 

Before explaining the new AC switch structure, it is 

essential to remind the super-gain BJT structure and its 

main characterization results. The key features of the 

device are: typical breakdown voltage of 600 V, 

current gain higher than 100 and low on-state power 

dissipation within 0.3 W/A. 

Fig. 1 shows the physical structure of the device. 

The physical structure of the super-gain BJT is 

composed of two parts. The first one is a thin (< 2 µm) 

and weakly doped (< 1015 cm-3) P-type base under the 

Emitter, used for conducting the collector-base current 

flow. The second part is composed of a thick P+ well 

under  the  thin  base, designed  to  reduce  the  
 

Table 1  Existing solutions for AC switching. Advantages (+) and drawbacks (-) are particularly highlighted. 

Solution for AC switching SCRs Triac Diode bridge + IGBT IGBTs + diodes SJ-MOSFETs + diodes 

Symbol 

 
 

On-state power losses + + + + - - - - - 

Controllability (on and off-states) - - - - ++ + + 

Cost + + + + - - - 
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3.1 Test Bench Presentation and Precautions 

Fig. 4 shows the test bench used for the 

characterization procedure. It consists of a Tektronix 

370 A curve tracer, a Haake F6 oil bath and a 3-pin 

socket. This characterization is carried out in a 

temperature-controlled environment in order to 

observe the thermal impacts on the electrical behavior 

of the TBBS. Polarization of components and 

acquisition of data were accomplished by the curve 

tracer, and the 3-pin socket is used to establish the 

connection between the oil bath and the curve tracer. 

Several precautions should be taken during the 

experimental measurements. Regarding the oil bath, 

the maximum temperature measured must be lower 

than the boiling point of the dielectric oil to prevent the 

toxic vapor. A dielectric oil (3M Fluorinert FC40), 

whose boiling point equals to 165 °C, is used. The 

maximum test temperature is limited to 125 °C. The 

estimation of the collector current (IC) and VCE(sat) is 

indispensable to ensure that the device operates in the 

SOA (safety operating area). If the SOA is not 

specified in the datasheet, it is necessary to control the 

IC and VCE(sat)-parameters within the maximum power 

dissipation of the device. Finally, an exceedingly high 

temperature could harden the PVC cables in the 

dielectric oil, which could lead to a risk of short circuit. 

So, it is recommended to use the silicone cables which 

can withstand a higher measurement temperature. 
 

 

Fig. 4  Test bench used for the characterization procedure. 

3.2 Process of Experiment 

The characterization is carried out both in forward 

and reverse-bias at three levels of junction 

temperature (25, 75, 125 °C). Regarding the 

forward-biased characterization, the studies on the 

breakdown voltage (VCEO, VCBO) and the evolution of 

the gain (hFE) as a function of the current density (JC) 

at various junction temperatures have been done for 

the super-gain BJT and the new TBBS respectively. 

To obtain the gummel plot, the base current (IB) of the 

component varied from 10 µA to 100 mA and then, 

for each level of temperature measured, the couple of 

parameters (hFE, JC) is calculated and plotted on the 

same graph. In this way, the evolution of the gain 

versus current density for different junction 

temperatures is obtained. 

The same measurement procedure is applied for the 

reverse-biased characterization. The polarization of the 

device under test is inverted by exchanging the pins of 

collector and emitter, in the meantime keeping the 

same polarization of base as previous. 

The measurement of the on-state saturation voltage 

of TBBS is carried out with a driving current IB = 500 

mA and at the typical test conditions (Tj = 25 °C, IC = 1 

A) defined by semiconductor device manufacturers. 

4. Experimental Results and Discussion 

4.1 Breakdown Voltage 

Fig. 5 shows the forward-biased breakdown voltage 

of the proposed AC switch TBBS at the operational 

temperature of 25 °C. This breakdown voltage value 

reaches typically 620 V. 

It is important to notice that this value remains 

constant despite the change of the junction temperature 

(from 25 °C up to 125 °C). This phenomenon is also 

observed for the other breakdown voltages, both in 

forward-biased (VCBO) and in reverse-biased (VECO). In 

addition, their shapes are almost the same except their 

values. All the measurement values of the 

forward-biased and reverse-biased breakdown voltage 

(VCEO, VCBO, VECO) are summed up in Table 2. 

3-pin socket Tektronix 370 A: 

Step generator up to 

200 mA / 2 V 

Collector supply up 

to 20 A / 2,000 V 

Oil bath: 

૛૙ Ԩ െ  ૛ૠ૙ Ԩ  
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super-gain BJT. Taking their identical curve forms, this 

experimental figure proves us that the performance of 

TBBS is defined by that of the reverse-biased 

super-gain BJT. 

Fig. 7 shows a comparison of the Gummel curve in 

forward bias between the super-gain BJT and the 

TBBS. The experimental results exhibit that the DC 

current gain (in direct mode, hFE) of the super-gain BJT 

is much higher than any other marketed bipolar 

transistor since it can reach more than 200 and this 

value goes even higher when the junction temperature 

increases. This feature suits its original design concept. 

The thinner base gives a higher gain to super-gain BJT. 

This also means that the base current (IB) can be 

smaller for the same level of collector current (IC), 

which reduces the consumption of the control circuit. 

The forward-biased gain of TBBS is determined by 

the reverse-biased gain of a single super-gain BJT. Its 

maximum value is equal to 10 (Fig. 6), which is great 

enough to be the switch for household appliances. This 

value also exhibits that the TBBS is capable of passing 

through the alternative current flow because of its 

symmetrical structure, which is another essential 

feature for an AC switch. 

4.3 On-State Power Dissipation 

The conduction power losses are also a critical 

parameter in practice to choose a power device. 

Regarding bipolar transistors, the on-state power losses 

are generally limited by the saturation voltage (VCE(sat)). 

 

 
 

Fig. 7  hFE(JC) at Tj = 25 °C and VCE(sat) = 0.3 V. 

For instance, the VCE(sat)-parameter of the super-gain 

BJT and the TBBS has been measured at the typical 

conditions generally defined by the device 

manufacturer. For a collector current of 1 A and a 

junction temperature of 25 °C, the VCE(sat) of super-gain 

BJT and TBBS equal 0.20 V and 0.29 V respectively, 

which means on-state power losses of 0.20 W/A and 

0.29 W/A. 

For an AC switch, this level of on-state power 

dissipation (0.29 W/A) is amazing. To highlight this 

feature of the TBBS, a marketed and widely used 5 A, 

600 V triac has been characterized to compare its 

performances with the TBBS ones. The I-V curves of 

each component are presented in Fig. 8. It is important 

to notice that the measurements have been performed 

at the same junction temperature (25 °C) and the same 

driving current (500 mA). For the same level of current 

flow (1 A), the voltage drops of TBBS and Triac are 

about 0.29 V and 1 V, respectively. It means that their 

on-state power dissipations are equal to 0.29 W/A and 

1 W/A, respectively. This result presents a great 

advantage of TBBS in terms of power dissipation 

compared with triac. 

Table 3 gives the comparison on the power 

dissipation of several AC switch solutions used in 

power electronics. The results clearly show that the 

TBBS exhibits the most attractive performances in 

terms of on-state power losses. The application of this 

kind of device can not only save energy consumptions, 
 

 

 
 

Fig. 8  On-state voltage drop. Comparison TBBS vs. 5 A, 
600 V Triac. 
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Table 3  On-state power dissipation, comparison of existing 
AC switching solutions. 

AC switch solutions 
On-state power dissipation 
(Ic = 1 A, Tj = 25 Ԩ) 

Thyristor in antiparallel 1 W/A 

TRIAC 1 W/A 

Diode bridge + IGBT 2 W/A 

IGBTs + Diodes 2 W/A 

SJ-MOSFET + Diodes 0.9 W/A 

TBBS 0.29 W/A 
 

but also reduce the heat at the same level of current 

flow thus minimize the size of heat-sink and extend the 

lifetime and reliability of the component. 

5. Conclusions 

The efficient management of domestic electrical 

energy imposes the development of high performance 

AC switch. To achieve this goal, the GREMAN 

laboratory has recently developed a new super-gain 

BJT. Its promising electrical performances on the 

reverse-biased DC current gain (hFC higher than 10) 

and saturation voltage drop (VCE(sat) lower than 0.25 V) 

give birth to a new structure of AC switch solution, 

named as TBBS (transistor based bidirectional switch). 

This innovative AC switch structure is characterized 

and is proven to be bidirectional in voltage and current 

and totally controllable (turn-on and turn-off). Its 

breakdown voltage is about 620 V. This value is 

suitable for typical domestic applications. The 

maximum DC current gain of this AC switch is about 

10, which means that the device is capable of 

conducting a high current flow and easy to drive 

(smaller Base current). Its on-state voltage drop of 0.29 

V makes it very competitive in the on-state power 

dissipation (0.29 W/A) compared with existing AC 

switch solutions (for example, triac). 

The requirements of “smart buildings” and the 

domestic applications (lighting systems, computers, 

remote-control systems,etc.) impose the further study 

of this new AC switch solution focusing on the 

dynamic mode characterization and the development of 

the specific driving circuit. The performance of the 

super-gain BJT could also be improved to expand the 

scope of application of TBBS. 
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