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Abstract: The zeolite synthesis using waste as silicon source is a promising low-cost process. Sugarcane bagasse ash is a hazardous 
solid waste generated in large amounts in the sugar industry. Thus, development of new procedures for its productive reuse is 
relevant. Therefore, this waste was used to prepare a new ZCNT (zeolite/carbon nanotube material). In this work, ZCNT was applied 
in a CO2/CH4 separation. The adsorption took place at 303 K under pressure of 0.1 until 20 bar and the data were fitted by Langmuir, 
Toth and Freundlich equations. The adsorbed amount at 20 bar found was 4.7 mmol of CO2/g and 4.1 mmol of CH4/g; at 3 bar the 
adsorbed amount was 4.1 mmol of CO2/g and 1.2 mmol of CH4/g. This result indicates that ZCNT has potential application in 
CO2/CH4 separation at low pressures. 
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1. Introduction  

Greenhouse gases are considered as one cause of 
the global temperature increase, and this has attracted 
attention to the need to develop strategies to decrease 
CO2 (carbon dioxide) emissions [1]. CO2 causes 
serious environmental problems as well as impurity in 
natural gas. CO2 separation from natural gas is an 
important concern in the chemical industry because it 
reduces the energy content of natural gas, and in the 
presence of water vapor, it becomes corrosive to 
equipment and pipelines [2]. The most commonly 
used techniques for CO2 capture and separation from 
fuel gases include ammonium absorption [2], 
dual-alkali absorption [3], membrane separation [4], 
and solid adsorbents [5].  

Intense research is currently focused on the design 
of new and effective CO2 adsorbents. The main 
                                                           

*Corresponding author: Eduardo Radovanovic, Dr., 
research fields: chemical materials, polymers and composites. 
E-mail: eradovanovic@uem.br. 

challenge for greenhouse gas adsorption is to find a 
way to decrease its cost and make it more attractive 
than other market technologies. Therefore, CO2 
capture based on cheap technology with great 
potential for reducing the global cost of sorbents is a 
very promising alternative for the future [6]. 

One of the most promising strategies to prepare 
low-cost sorbents is the replacement of commercial 
chemicals with waste products as the starting 
precursor [7-13]. The disposal of large amounts of 
SCBA (sugarcane bagasse ash) has become a serious 
environmental problem. Therefore, this solid waste 
can be used to prepare zeolite [14]. On the other hand, 
CNTs (carbon nanotubes), due to their distinctive 
chemical and physical properties can be applied in gas 
separation process. Considering this, low-cost 
zeolite/CNT synthesis is a promising technique for 
recycling SCBA and separate CO2 from natural gases. 

In the present study, the authors have applied a 
low-cost zeolite A, synthesized using sugarcane 
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bagasse ash as the silicon source and carbon 
nanotubes, to the CO2 and CH4 adsorption process by 
the gravimetric method at high pressure.  

2. Experimental Sections 

2.1 Materials 

SCBA for zeolite synthesis was collected from the 
sugarcane industry located in the region of Maringa 
City, Parana, Brazil. The authors used sodium 
hydroxide (Across), sodium aluminate (Sigma Aldrich) 
and MWCNT (multiwall carbon nanotubes) from 
CNT Co. Ltd. (Incheon, Korea). The gases CO2, CH4 
and helium were obtained from Linde Group at 
purities of 99.999%. 

2.2 Porous Material Preparation 

For the material synthesis, 3 g of SCBA treated at 
873 K by 4 h was homogeneously mixed with NaOH 
in a 1.5 ratio (4.5 g of NaOH). Then, the mixture was 
heated in a nickel crucible at 823 K for 40 min. The 
resultant fused mixture was dissolved in 100 mL of 
distilled water (Solution 1). Soon after, an amount of 
100 mL of sodium aluminate solution 0.48 mol·L-1 
(Sigma Aldrich) and 1 g of CNT was added to 
Solution 1. The gel was transferred to polypropylene 
reactor (250 mL) and kept at 353 K for 148 h. Then, 
the solid was separated by filtration, washed with 
distilled water and dried overnight at 100 oC. 

2.3 Characterization 

The synthesized zeolite/CNT was characterized by 
FTIR (Fourier transform infrared spectrometry) 
(Bomem-Michelson MB-100 with a resolution of 4 
cm-1 using a KBr disc method), XRD (X-ray 
diffraction) analysis (Shimadzu, model XRD-6000 
X-ray operated at 40 kV and 40 mA, with Cu Kα as 
the radiation source, diffraction angle 2θ in the range 
10º-60º). The specific surface area was determined by 
N2 physisorption at 77 K (Micromeritics ASA 2020) 
using BET method, SEM (scanning electron 
microscopy, Shimadzu SSX-550 Superscan), and TEM 

(transmission electron microscopy, JEOL JEM 1400). 

2.4 CO2 Adsorption by the Gravimetric Method 

Adsorption equilibrium studies were performed 
using a magnetic suspension balance from Rubotherm 
(Bochum, Germany). The adsorbent was degassed in 
situ at 573 K until no mass variation was observed in 
the system. After that, the measuring chamber was 
cooled down to 303 K, and helium gas pressure was 
increased stepwise (up to 20 bar). Then, the CO2 gas 
was added in the chamber and mass variation at 
equilibrium (m) was recorded for each pressure step 
(until 20 bar). The previous experiment with helium 
was carried out to determine the specific volume of 
the solid phase of the sample and the sample container 
volume, characteristic of the suspended parts inside 
the chamber. The sum of these volumes was used to 
account for the buoyancy effects on measurements 
with adsorbing gases. For a given gas pressure P, the 
excess adsorbed phase concentration (disregarding 
adsorbed volumes) may be calculated according to  
Eq. (1) [15-17]: 

mex (P, T) = Δm(P, T) + (Vb + Vs)·ρ(P, T)   (1) 
where, mex is the excess uptake (g/g sample), Δm is the 
mass difference sensed by the equipment (g/g sample), 
Vb is the specific volume of the balance-suspended 
components (cm3/g sample), Vs is the specific volume 
of the sample solid phase (cm3/g sample), ρ is the gas 
density (g/cm3), P is the pressure (bar), and T is the 
temperature (K).  

To clearly describe the CO2 and CH4 adsorption 
behavior on the synthesized zeolite/CNT, the 
Langmuir, Toth, and Freundlich equations were used 
to fit the isotherms using the software Origin 7.0®.  

The adsorption selectivity of CO2 and CH4 was 
calculated with Eq. (2): 

2 2

4 4

α(CO ) n(CO )

(CH ) n(CH )
=                (2) 

Where absolute adsorbed amount (n) of CO2 and 
CH4 (mmol/g) and temperature of 303 K. 
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3. Results 
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molecules lesser polarity than CO2 that decrease the 
methane diffusion on ZCNT pores structure. In fact, 
this properties difference can be used in the CH4/CO2 
separation process because at low pressures, the 
selectivity value for CO2 is close to 6 (Fig. 3a). 
Therefore, these results indicate that ZCNT obtained 
from SCBA is a promising low-cost sorbent and has 
potential as an efficient gas-separation process at low 
pressures. 

Table 1 shows the maximum values for the 
adsorption amount (qm), the correlation coefficient (r2) 
of fitted curves, and the other parameters for adjusted 
equations (supplementary material).  

The CO2 adsorption on adsorbents can be better 
fitted by the Langmuir adsorption equation. The 
Langmuir isotherm assumes that adsorption occurs on 
a homogeneous surface containing sites with equal 
energy. The CH4 adsorption can be explained by the 
Freundlich equation. This equation indicates an 
adsorption on heterogeneous surface. In fact, the 
hybrid material ZCNT exhibits polar and nonpolar 
structure and becomes hydrophilic zeolite and CNT 
respectively. Therefore, the new material prepared in 
this work exhibits potential as an adsorbent and 
molecular sieve. 

Fig. 3b shows the kinetics of CO2 and CH4 uptake 
by the ZCNT at 303 K and 20 bar of pressure. The 
adsorption kinetics of two gases consisted of an initial 
rapid step and a second slow step (where equilibrium 
uptake was obtained). The equilibrium time was 7 min 
 

Table 1  Parameters for adjusted equations. 

Equations CO2 CH4 

Toth 

qm (mmol/g) 4.69 ± 0.12 6.77 ± 3.53 
b (bar-1) 2.32 ± 0.61 0.16 ± 0.02 
n 0.10 ± 0.17 0.62 ± 0.29 
r2 0.95708 0.97558 

Freundlich 
n 0.17 ± 0.02 0.61 ± 0.01 
k 3.05 ± 0.15 0.67 ± 0.01 
r2 0.77641 0.9979 

Langmuir 
qm (mmol/g) 4.69 ± 0.06 6.40 ± 0,37 
b (bar-1) 2.32 ± 0.24 0.08 ± 0.01 
r2 0.95903 0.98488 

 

for CO2 and 3 min for CH4. The relatively fast 
adsorption of CH4 on the ZCNT reflected the 
existence of easier accessibility of adsorption sites on 
the adsorbent, probably due to low polarity of CNT 
that interacts more with CH4 than CO2. This fact 
indicates that at higher pressure (20 bar), the 
hydrophilic zeolite structure was saturated with CO2 
but CNT pores were still absorbing nonpolar 
molecules of CH4. 

4. Conclusions 

In this work, it was observed that the unprecedented 
ZCNT material exhibited higher selectivity for CO2 
than CH4, close to 6 units. This reveals a new green 
and low-cost material for gas separation, doubly 
beneficial to environmental management due to 
decreased contamination of hazardous waste as 
bagasse ash and easy capturing and low separation 
costs for greenhouse gases. 
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