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Abstract: This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical 
expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a 
compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, 
such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection 
coefficient and a more general shape for the diagram of photon density versus mode phase – this latter will reduce to the classical 
“ellipse” in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small 
mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the 
coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable 
laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that 
for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its 
current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would 
be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative 
travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal 
round-trip time is much less than unity (that would mean in situations of as-cleaved lasers). 
 
Key words: Semiconductor lasers, external optical feedback, compound cavity modes, weak-feedback regime, strong-feedback 
regime, coherence collapse, iterative travelling-wave model, Lang-Kobayashi model. 

 
1. Introduction  

It has been widely recognized that semiconductor 
lasers subject to external optical feedback can exhibit 
a large variety of interesting properties. A laser with 
external optical feedback builds an ideal physical 
system for analyzing and exploring typical phenomena 
encountered in a nonlinear time-delayed system, such 
as bifurcations, instability (and re-stability) thresholds 
and routes to deterministic chaos. 

From the engineering point of view, external optical 
feedback can be used for improving the performance 
of a laser, such as line width narrowing, threshold 
lowering and intensity-noise reducing. External 
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optical feedback, on the other hand, is also responsible 
for undesirable effects (for example, mode hopping, 
line width broadening and frequency destabilization) 
whose effective control is therefore essential for many 
laser-based applications, such as coherent 
communications, video recording and sensing 
systems. 

Since the last three decades, intensive studies have 
been made aimed at better understanding the 
mechanism of the nonlinear dynamics of a compound 
laser system. In parallel with numerous experimental 
investigations, theoretical approaches have also been 
developed [1, 2]. Most of these approaches have been 
elaborated on the basis of the rate equations proposed 
by LK (Lang and Kobayashi) [3]. In the case of the 
WFB (Weak-feedback) regime of operation (feedback 
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power ratio less than − 30 dB), these approaches have 
been found to describe adequately various phenomena 
so far observed experimentally, such as the onset of 
CC (Coherence collapse) [4], the LFFs 
(Low-frequency fluctuations) [5] and the 
period-doubling route to deterministic chaos [6]. The 
LK rate equations have also been used to explain the 
physical mechanisms of the steady-state [7] and 
transient [8] LFFs, as well as of the chaotic itinerancy 
for the case of relatively strong feedback [7]. 

Originally, the LK rate equations were proposed to 
model a single-mode laser with weak feedback and 
large delays. When the reflectivity of the external 
reflecting surface is comparable with or greater than 
the laser facet reflectivity, strong feedback should be 
taken into account. In this case, the use of the LK 
model would no longer be justified. Thus, in order to 
describe the behavior of a feedback laser with 
arbitrary feedback levels, an ITW (Iterative 
traveling-wave) model was developed [9, 10]. By 
using this model, dynamic and noise properties of a 
laser subject to strong optical feedback were 
numerically investigated [11]. The ITW model 
predicts in particular a significant decrease of the 
intensity noise in the SFB (Strong-feedback) regime. 

The behavior of a laser in the SFB regime was also 
analyzed by use of an improved model [12]. It was 
shown that, as in good agreement with experimental 
observations, in this state the compound laser system 
operates in uniform pulsation. 

A TW (Traveling-wave) approach [13, 14] was 
proposed to model a feedback laser [15], where the 
system is described by partial differential equations 
for the electrical fields which counter-propagate along 
the longitudinal axis of the laser and are coupled 
through the usual carrier rate equation. A comparison 
has been made between the LK and TW models, with 
the emphasis on the stability analysis of the cavity 
modes in their continuous-wave states. 

It was shown that the LK rate equations can be 
solved analytically by use of asymptotic methods [16]. 

In this approach, a laser operating in the WFB regime 
is regarded as a weakly-perturbed nonlinear dynamic 
system and the threshold of instability corresponds to 
the first Hopf bifurcation of the LK rate equations. An 
attempt has been made at interpreting experimental 
findings obtained with InAs/InP quantum-dash 
Fabry-Perot lasers by means of this approach, such as 
the onset of CC and the transition from the LFFs to 
SFB regimes [17]. 

This paper investigates the modal properties of a 
semiconductor laser under strong optical feedback by 
use of the ITW model. It may be considered as an 
extension of the contributions reported in [11, 18] 
and [12]. We give a deeper physical insight into a 
compound laser system by providing a quantitative 
description of a compound cavity mode, and discuss 
the similarities and the differences between the ITW 
and LK models. In Section 2, steady-state solutions 
will be derived for feedback-induced compound cavity 
modes. In Section 3, the properties of these modes 
will be discussed in details and compared with 
previous work. In Section 4, a quantitative comparison 
will be made between the ITW and LK models. We 
will show that in the WFB regime the ITW model will 
be reduced to the LK model in the case of as-cleaved 
lasers. Finally, Section 5 will summarize our 
conclusions. 

2. Iterative Traveling-Wave Model 

In this section, we outline briefly the formalism that 
we developed and examine some properties of a 
compound cavity mode in its steady state. 

2.1 Iterative Equation 

Consider the configuration of Fig. 1, a continuously 
operating (single-longitudinal-mode) laser diode is in 
resonance with an external Fabry-Perot cavity. It  
assumed that r1, r2 and r3 are all real and dispersionless, 
and that r1 = r2. For this three-mirror system, the 
dominant resonator is defined by the mirrors with 
reflection coefficients 1r  and 3r , and multiple round 
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Fig. 1  Principle scheme of a single-mode laser diode with 
external optical feedback. ω0: emission (angular) frequency 
of the solitary laser (in the absence of feedback); τin: 
internal round-trip time; r1: reflection coefficient of the 
rear facet of the laser; r2: reflection coefficient of the front 
facet of the laser; r3: reflection coefficient of the external 
mirror; Ẽ(t):right-moving electric field passing through the 
laser front facet; L: length of external cavity assumed 
empty. 
 

trips of the light beam inside the external cavity 
should be in general taken into account for an 
arbitrary feedback level (i.e. r3∈[0, 1]). 

For this compound laser system, the right-moving 
electric field Ẽ(t), calculated at steps of the internal 
round-trip time τin (s) satisfies the following iterative 
equation [11, 18]: 
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In this equation, GN (s-1·m3) is the differential gain; 
α  is the line width enhancement factor; )(tN  (m-3) 
is the carrier density and Nth (in m-3) is the threshold 
carrier density; τ  (s) is the external round-trip time 
and 0Δ  ( rad , τω00Δ = ) is called the initial 
feedback phase which is associated with the emission 
frequency 0ω  of the solitary laser operating just 
above threshold. 

2.2 Steady-State Solutions 

By inserting )exp()(~)(~
0 tωjtEtE =  into Eq.(1) 

and considering steady-state solutions, we obtain the 
expression for the excess gain Gδ  (in 1−s ): 
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and that for the feedback phase Δ  ( rad , τω=Δ  
with ω : emission frequency of a possible mode): 
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In the above two equations, D  (dimensionless), 
E  (dimensionless) and 2b  ( rad ), which are all 
functions of 0Δ  and Δ , can be written respectively 
as: 
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Eqs. (2-6) are basic equations that we will use in the 
following for quantitatively describing the steady-state 
properties of a compound cavity mode (which may be 
called a CCM or simply a mode) generated under 
multiple-reflection configuration. 

2.3 Initial Feedback Phase 

Let us first examine the initial feedback phase 0Δ . 
For a given compound structure, the phase Δ  of a 
possible mode, being in dependence on 0Δ , is 
determined through the so-called phase condition, 
namely Eq. (3). 

It is known that under the consideration of low 
feedback levels ( 13 <<r ), the phase equation 
developed from the LK rate equations has a simpler 
form: 

)]Δsin()Δcos([ΔΔ 0 +−= ατγ       (7) 
where, γ  ( 1−s ) is the feedback rate defined as 
usual [1, 2]: 

inτr
rrγ

2

3
2

2 )1( −
=           (8) 

It can be seen from Eq. (7) that for the case of a 
solitary laser, an explicit expression for 0Δ  cannot 
be obtained by setting 0=γ  in this equation (giving 
rise to 00 Δ=Δ ). Two particular situations have been 
introduced and well studied where Δ  is predefined 
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and 0Δ  is then determined from Δ . The first 
situation corresponds to the "maximum-gain mode" 
defined by the condition )2(mod0Δ π= . This gives 
rise to )2(modΔ0 πατγ= . In the second situation, 
the initial frequency remains unchanged ( 0ΔΔ = ) and 
the related mode is called the “minimum-line width 
mode”. We have thus )(Δ 1

0 αtg −−= . 
In our case, the expression for 0Δ  can be 

determined directly from the phase condition. So by 
putting 03 =r  and 0=M  in Eqs. (4) and (5), we 
obtain 2

21 rD −= , 0=E , and from Eq. (6), 02 =b . 
Eq. (3) becomes: 

...),2,1,0(Δ0 ±±=== mπmβπm
τ
τ

in
    (9) 

where, β  is the ratio between the external and 
internal round-trip times. This result implies that only 
discrete values of 0Δ  ,which are authorized by the 
compound structure, and that these values are 
parameterized by the factor β , which is in general 
non integer and is much greater than 1 in most of the 
practical situations. We note that for both the 
“maximum-gain mode” and the “minimum-linewidth 
mode” exists a common solution in this paper, namely 

0Δ0 =  (when 0=α ), and that this corresponds to 
the zero-order solution ( 0=m ) of Eq. (9). For 
simplicity, we will use in the following 0Δ0 =  as 
the value of the initial feedback phase. 

2.4 Modal Density of Photons 

From the standard rate equation for the carrier 
density N  [1, 3] and by assuming a linear relation 
between the gain G  and N . the expression for the 
density of photons (or photon number) of a CCM was 
derived, which is denoted as I  (m-3),. Here I  is 
calculated directly from Ẽ(t), It is written in steady 
state: 
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where, sτ  (in seconds) is the carrier life time, pτ  
(in seconds) is the photon lifetime, and J  (in s-1·m-3) 

is the injection current. With a large enough value of 

J , a finite number of modes can be excited. Each of 
these modes has its own current threshold denoted as 

thJ , which, in certain situations, can be less than that 
of the solitary-laser mode, as will be shown in the 
following. By putting 0=I  in Eq. (10), we obtain 
the expression of thJ , which is written as: 
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For a solitary laser, 0)Δ( 0 =Gδ , Eq. (11) reduces 
to the usual form sthth τNJ /)Δ( 0 = . 

3. Properties of Compound Cavity Modes 

3.1 Bifurcation Diagram 

For a given compound structure, the phase 
condition determines the emission frequency of a 
possible mode. The phase Δ  associated with this 
mode should satisfy Eq. (3), which is a transcendental 
equation. In general only numerical solutions are 
possible. The bifurcation diagrams of the CCMs for 

2.02 =r  and 65.02 =r  are shown respectively in 
Fig. 2. The value of each point was obtained by a 
numerical solution of Eq. (3). Some parameter values 
used in the calculations are listed in Table 1. 

Two particular regions in Fig. 2b are presented in 
Fig. 3, where is found in (a) the shape predicted by the 
LK model as expected. We note that similar patterns 
can be obtained (not presented here) if the same 
regions in Fig. 2a are zoomed. It can be seen from Fig. 
2 that when 23 rr < , the number of modes increases 
progressively with 3r , as can be observed in a classical 

 
Table 1  Some parameters and their values used in 
simulations.  

Symbol Value Description 
inτ 9 ps Internal round-trip time 
τ  0.9 ns External round-trip time 

sτ 2 ns Carrier lifetime 

NG 2 × 10–12 m3·s–1 Differential gain 

thN 1024 m–3 Carrier density at threshold
0Δ 0 rad Initial feedback phase 

M  100 External round-trip number
 



Cavity-Mode Properties of Semiconductor Lasers Operating in Strong-Feedback Regime 

  

213

 
(a) 

 
(b) 

Fig. 2  Bifurcation diagram of the CCMs ( 5=α ). (a) 
2.02 =r ; (b) 65.02 =r . The values of the other parameters 

are listed in Table 1.  
 

bifurcation pattern. The whirl-shape region around the 
point ),( 2 πr  corresponds to the noisy CC region 
where many modes emerge. The maximum number of 
modes is attained at this critical point (Note that the 
excess gain Gδ  peaks at this point.). This situation 
corresponds to a symmetrical external cavity. For the 
case of 23 rr > , the modes will disappear also 
progressively. Finally, the number of modes will 
become minimum in the SFB region when 3r  
approaches unity. In this state, the compound system 
operates with significantly decreased RIN (Relative 
intensity noise), as observed experimentally in 
previous work [19, 20], indicating that beyond the 
noisy CC regime, the system could be re-stabilized, 
and that as a result pulsing operation of lasers with 
low intensity-noise level could be expected with 
external-mirror reflectivity comparable with 1. Note 
that in a similar classification [12], the CC regime was 
called the chaotic regime. 

 
(a) 

 
(b) 

Fig. 3  Zoom on two particular regions in Fig. 2b. (a) 
Region which includes the WFB regime and the MFB 
(moderate-feedback) regime where the use of the LK model 
may still be justified; (b) Whirl-shape region near the 
critical point ),( 2 πr , at which the maximum number of 

CCMs is found.  

The transition from the CC to SFB regime has been 
observed with 1.57 μm InAs/InP quantum-dash 
Fabry-Perot lasers, when these lasers (with as-cleaved 
facets) were assessed for their tolerance to external 
optical feedback by using a free-space setup with 
a 0.5 m-long external cavity [21]. In these experiments, 
the regime of strong feedback was attained for a 
pumping current of about 30 mA at a rather high 
feedback level (− 1.2 dB in terms of power ratio) with 
a 600 μm-long as-cleaved laser. As can be seen from 
the measured RF (Radio frequency) spectra reported 
in this reference, the transition to the SFB regime is 
characterized in the frequency domain by a significant 
increase of each RF peak power around the relaxation 
oscillation frequency (~ 4 GHz) of the solitary laser. 
Such an increase has an effect more significant on 
lower frequency peaks and results as a consequence in 
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an amplitude-enhanced quasi-uniform pulsation with 
frequency spacing of 300 MHz [ )2/( Lc= , with c : 
light velocity in vacuum]. 

This behavior manifested by a laser at a high 
feedback level can be quite well understood through 
the bifurcation diagram for the feedback phase Δ . 
From Fig. 2, when 3r  is close to 1, the number of 
possible modes becomes minimum for a feedback 
laser which is initially single-mode. Being in phase, 
these modes will interfere constructively to yield a 
pulsation at output. We note that the descriptions of 
this behavior in terms of the RIN spectrum and of the 
bifurcation diagram for the normalized carrier density 
are found in [11], showing clearly that high  
feedback levels can prevent a feedback laser from 
noisy output. 

3.2 Diagram of Photon Density versus Feedback 
Phase 

It is known that for a laser operating in the WFB 
(even in the MFB) regime, a common way to 
represent the CCMs at a fixed feedback level is 
through an ellipse showing the photon density I  Eq. 
(10) versus the feedback phase Δ  Eq. (7), and that 
only a finite number of CCM points are possible 
which are all located on the ellipse [22]. 

At arbitrary feedback levels, the explicit relation 
between I  and Δ  cannot be obtained 
straightforwardly, due to the transcendental form of 
the phase equation, Eq. (3). Thus, to analyze the 

Δ−I  characteristic of a possible mode, it is more 
convenient to establish a diagram relating I  with a 
Δ -dependent function denoted as )Δ(F . We have 
from Eqs. (2) and (3): 

)Δ(Δ F=                (12) 
where, 

⎥
⎦

⎤
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)Δ(

2
)Δ()Δ( 1

D
Etg

τ
τGδατF
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In this way, the Δ−I  characteristic of a possible 
mode is described through the FI −  diagram, which 

is built with continuous variation of Δ  for )Δ(F . 
All the possible mode points, numerically calculated 
from Eq. (3), will be located on this curve, as 
indicated by Eq. (12). 

Fig. 4a shows an example of F  versus Δ  
according to Eq. (13), for a laser with a symmetrical 
external cavity subject to relatively strong feedback 
( 2.023 == rr ). We also plot the first ten mode points 
in the vicinity of the initial feedback phase 0Δ  
( 0Δ0 = ). The corresponding FI −  characteristic is 
illustrated in Fig. 4b. 

It can be seen from this figure that the lower-order 
modes will give higher power output, and that if the 
maximum of the FI −  curve is referred to as the 
maximum-gain mode, the first possible mode (“–1” 
-order mode), being located the closest to the 
maximum-gain mode, will have the best chances to be 
dynamically stable. 

As can be seen from Fig. 2, with the configuration 
of symmetrical external cavity a maximum number of 
possible modes can be generated inside the compound 
laser structure. Any mode (positive or negative order) 
with its Δ  value close to π  or π−  will have a 
great F  value Fig. 4a, which corresponds to a 
quasi-null value of the photon density Fig. 4b. 

In Fig. 5, an example of the evolution of I  versus 
F  shape is given for various values of 3r , where 
two typical phenomena inside the CC regime are 
clearly shown: a banana-like shape and a shift, to 
positive F  values, of the CCM fixed points due to 
the inclusion of multiple reflections in the ITW model. 
Such a shape will become the most pronounced in the 
case of symmetrical external cavity. The perfect 
overlap of the two ellipses at 003.03 =r  means that 
in the WFB regime of operation ( 13 <<r ), except for 
a phase constant, the ITW and LK models predict the 
same Δ−I  characteristic. Moreover, when 3r  
approaches 1 (very strong feedback), all the possible 
modes will have their photon densities greater than 
that of the solitary laser. 
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(a) 

 
(b) 

Fig. 4  (a) Variation of F  as a function of Δ  (Eq. 
(13) )in the range of ππ 2Δ2 ≤≤− , for a symmetrical 
external cavity ( 2.023 == rr ) and the first ten mode points 
around 0Δ =  [numerical solutions of Eq. (3), 5.5=α ]. 
The values of the other parameters are listed in Table 1. 
The red square refers to the solution of solitary laser; (b) 
Corresponding FI −  diagram ( psτ p 2= ). The 
maximum-gain mode is indicated by an arrow. The red dot 
refers to the solution of solitary laser.  
 

 
Fig. 5  Evolution of the CCM “ellipse” with decreasing of 
the external-mirror reflection coefficient 3r  ( 65.02 =r ). 

Red curves: from the ITW model; Green curves: from the 
LK model. The black dots refer to the solitary-laser 
solution. 

3.3 Reduction of Current Threshold and Enhancement 
of Output Power 

It is known that external optical feedback can have 

an effect on reduction of the current threshold, as 
observed with InAs/InP quantum-dash Fabry-Perot 
lasers [21] as well as with index-guided InGsAsP 
lasers [19]. 

For a given compound cavity mode Δ , this effect 
can be characterized by: 

Ns
thth Gτ

GδJJJδ )Δ()Δ()Δ()Δ( 0
−

=−=       (14) 

So a mode Δ  with its 0<Gδ  will always have 
its current threshold reduced with respect to that of the 
solitary-laser mode 0Δ . An example of the 
dependence of Jδ  on 3r  is shown in Fig. 6. We 
have considered the “– 1” -order mode for each 
combination of 2r  and 3r , and have chosen three 
typical values of 2r : 0.5477 for an as-cleaved facet 
( 3.02

2 =r ), 0.2 for a moderately-AR 
(anti-reflection)-coated facet, and 0.01 for a 
highly-AR-coated facet. The expression for the 

2r -dependent photon lifetime pτ  is given by: 

( )⎥⎦
⎤

⎢⎣
⎡ −= 21ln11 rr

l
α

n
c

τ i
gp

         (15) 

where, gn  is the group index of refraction, iα  (in 
m-1) is the linear attenuation coefficient and l  (in m) 
is the length of internal cavity. For simplicity, we 
assume that 0=iα  ( 21 rr = ). so: 

)ln(4)ln(2 22 r
τ

rc
ln

τ ing
p

−
=

−
=        (16) 

Fig. 6 shows that increasing the feedback level 
would not affect much the current threshold for an 
as-cleaved laser (a), and that maximum effect on 
threshold reduction is obtained when 3r  is close to 
unity for each of these three cases. The reduction 
effect becomes the most significant when the laser is 
highly AR-coated ( 01.02 =r ) and operates in the SFB 
regime (c). Moreover, maximum effect on 
feedback-induced power enhancement can be 
expected with as-cleaved lasers (a). 

We also find a phase shift, to negative values, of all 
these modes with respect to 0Δ , assumed to be equal 
to zero. For the case of 5477.02 =r , we find that at 

9.03 =r , the mode has its phase value close to zero:  
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Fig. 6  Dependence, on the external reflection coefficient 

3r , of the light versus current characteristic ( JI − ), for 
three typical values of 2r . The solitary-laser JI −  curves 

(
3132

0 105)Δ( −− ⋅×= msJth  and 03 =r ) are illustrated in 
blue. As 3r  increases from 0 to 1 (with increment of 0.1), 
each JI −  line will have its Jδ  as well as its slope 

11 )( −− + Gδτ p  (Eq. (10)) increased monotonously.  
 

rad001184.0Δ −= . This result means that in the 
absence of AR treatment, a compound laser system 
operating in the SFB regime would be able to deliver 
a frequency same as that of its solitary laser ( 0ΔΔ = , 
minimum-line width mode) but with higher output 
power. 

4. Weak-Feedback Regime 

In this section, the condition will be derived under 
which, except for a phase term, the ITW model    
will reduce to the LK model in the WFB regime 
( 13 <<r ). 

4.1 General Case 

At low feedback levels, the light beam emitted by 
the solitary laser undergoes only a single round trip 
inside the external cavity ( 1=M ). Eqs. (4)-(6) are 
simplified respectively as: 

[ ])Δcos(1)1( 32
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232 +−−= πmβrrrE        (18) 
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where, Eq. (9) was used and the product inγτ  (Eq. (8)) 

satisfies the following equation: 
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2 /)1( rrrγτin −=           (20) 
By using Eq. (6), we obtain the expression for the 

steady-state excess gain: 
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and the phase condition: 
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It follows that both Gδ  and Δ  of a possible 
mode depend on the product inγτ . Two specific cases 
are discussed in the following. 

4.2 Case of as-Cleaved Lasers ( 1<<inγτ ) 

For a compound structure with an as-cleaved laser 
( 3.02 ≈r ), 1<<inγτ . For example, with 

psτin 9=  and 005.03 =r  (−46 dB in terms of 
reflectivity), we have 3104.6 −×=inγτ . However, 
small values of 2r  due to AR coating on laser facets 
can make inγτ  values comparable with 1. Thus, with 
the same values of inτ  and 3r , we have with 

01.02 =r : 5.0=inγτ . 
In the case of 1<<inγτ , the excess gain and the 

phase condition have simpler forms. Eqs. (19, 21 and 
22) become hence (after the approximations 

xx ≈+ )1ln(  and xxarctg ≈)( ): 

)Δcos(2 +−= πmβαγτb in         (23) 

)Δcos(2 +−= πmβγGδ          (24) 

[ ])Δsin()Δcos(Δ +++−= πmβπmβαγτπmβ (25) 

Eqs. (24) and (25) clearly indicate that at low 
feedback levels except for a phase shift the ITW 
model will reduce to the LK model in the case of 

1<<inγτ  (as-cleaved lasers). Note that the validity of 
the LK model is usually restricted by a less severe 
condition, namely 2/1≤inγτ  [22]. 

4.3 Case of a Symmetrical External Cavity ( 23 rr = ) 

For the three-mirror structure illustrated in Fig. 1, a 
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lot of combinations are in principle possible for the 
values of 2r  and 3r , because of anti-reflection and 
high-reflection treatments on laser facets. Here, we are 
interested in a particular situation where 23 rr =  
(symmetrical external cavity). 

Let us return to Fig. 2. As can be seen from this 
figure that, characterized by a whirl-like shape in the 
bifurcation pattern, the CC region is located around 
the point ),( 2 πr . This phenomenon can be explained 
through Eqs. (22) and (20). Inside the CC region, 
many modes may exist. This corresponds to a great 
amplitude of the function  

)]Δcos(1/[)Δsin( +++ πmβγτπmβγτ inin  in Eq. 
(22). It can easily be shown that this function has its 

maximum 221/ inin τγγτA −=  at 

πmβγτin −−= )arccos(Δ . For a laser with 12
2 <r , 

23 / rrγτin ≈  (Eq. (20)). This gives rise to 
2

2
2

323 /1)/( rrrrA −≈ . So A  is maximized when 
the external cavity becomes symmetrical ( 23 rr = ). 
This result implies that the whirl-shape region in the 
bifurcation pattern is in general centered at the critical 
point ( πmβπr −,2 ), at which the maximum number 
of modes is obtained. 

4.4 Shift and Entrance of the Coherence-Collapse 
Region 

From the above discussions and Fig. 2, we see that 
decreasing 2r  values will make the CC region shifted 
to small values of 3r  and as a result will reduce the 
threshold for its entrance. This means that a laser with 
smaller 2r  values would be less resistant to external 
optical feedback, and that a compound system with a 
highly-AR-coated laser ( 12 <<r ) could manifest 
instable chaotic behavior even at (very) low feedback 
levels. On the other hand, the same system could 
operate in pulsing regime at moderate feedback levels. 
These statements are found in good agreement with 
the results obtained in an early work [17], where it 
was shown that at the onset of CC, the critical 
feedback level (in terms of the external-mirror 
reflection coefficient) CCr _3  is related to 2r  by: 

[ ])(Δcos
2

sin1)1(

Γ
1

0
222

2

2
_3

αtgτωαr

τrr
R

Rin
CC

−−⎟
⎠
⎞

⎜
⎝
⎛+−

−
= (26) 

In this equation, the term )](Δcos[ 1
0 αtg −−  

should be negative and the relaxation oscillation 
frequency Rω  (in s-1) and the damping rate RΓ  (in 
s-1) of the solitary laser are defined respectively as 

pNR τIGω /=  and 2/)(Γ 1 IGτ NsR += − . 

5. Conclusions 

This paper provides additional information about 
the physical insight into a feedback laser operating in 
the strong-feedback regime. Analytical expressions 
have been developed based on an iterative 
travelling-wave model, which enable a description in a 
rigorous way of a compound cavity mode in its steady 
state. 

It is shown that with decreasing, from 1, of the 
reflection coefficient of the external mirror, three 
regimes will emerge successively which can clearly be 
distinguished from the bifurcation diagram of the 
compound cavity modes: strong-feedback, 
coherence-collapse, and moderate-feedback regimes. 
This latter covers the weak-feedback regime where the 
use of the model of Lang and Kobayashi is entirely 
justified. It is found that, independently of feedback 
levels, the maximum number of modes is obtained 
when the external cavity becomes symmetrical. This 
state may cause a noisiest laser output. In the 
strong-feedback regime, a feedback laser is 
characterized by a small mode number and a high 
density of photons. This behavior confirms previous 
experimental observations, showing that beyond the 
coherence-collapse regime, the system could be 
re-stabilized, and that as a result power-enhanced 
low-noise laser operation with uniform pulsation is 
possible with external-mirror reflectivity close to 1. 

A more general way to represent the diagram of 
photon density versus feedback phase is proposed, 
whose shape will reduce to the classical “ellipse” in 
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the weak-feedback regime. 
For a compound system operating in the 

strong-feedback regime, an anti-reflection treatment of 
a laser can significantly reduce its current threshold, 
and that in the absence of this treatment, excitation of 
a minimum-linewidth mode with higher output power 
would be possible inside such a system in this paper. 

A quantitative comparison is made between the 
iterative travelling-wave and Lang-Kobayashi models, 
showing that in the weak-feedback regime, these two 
models are identical (except for a phase constant) in 
cases where the product of the feedback rate and the 
internal round-trip time is much less than 1 – that 
would mean in situations of as-cleaved lasers. 

Future investigations will include a detailed 
analysis of the coherence-collapse regime of 
anti-reflection-treated feedback lasers (which will 
more easily be coherence-collapsed and could be 
re-stabilized at moderate-feedback levels) by means of 
these two models. 
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