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Abstract: Poly(lactic acid) (PLA) is a biodegradable polyester with great interest because it is produced from renewable resources at 
low cost, is recyclable to its monomers and is a potential substitute to petroleum-based polymers. The ultraviolet (UV) degradation of 
polymers has huge importance since the resistance to ageing, especially to UV light, is a key factor for outdoor applications. Therefore, 
the goal of the present work was to study the effect of the addition of different organic modified montmorillonites (MMT) on the UV 
stability of PLA. Results showed a higher decrease of intrinsic viscosity, increase of crystallinity and chemical structure changes along 
degradation time for nanocomposites. Although the photodegradation mechanism is the same as the one previously proposed, the 
presence of organoclays in the PLA matrix enhances photodegradation. 
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Nomenclature  

PLA: Poly(lactic acid) 
UV: Ultraviolet 
IR: Infra-red 
MMT: Organic modified montmorillonite 

1. Introduction 

In recent years, bio-based and biodegradable 
polymers have attracted special attention as substitutes 
for petroleum-based polymers [1, 2]. Among 
biodegradable polyesters, Poly(lactic acid) (PLA) has 
great interest because it is produced from renewable 
resources at low cost, is non-toxic to environment, as 
well as, to the human body and can be recyclable to its 
monomers with a high yield [3]. In spite of having 
various good properties, PLA exhibits weaknesses in 
some aspects, such as, barrier and mechanical 
properties, thermal stability and heat distortion 
temperature, which are often not good enough for some 
demanding applications [2, 4, 5]. Therefore, research 
work has shown that these properties can be enhanced 
by the addition of low amounts of nanoclays [6-9]. 
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Nanoclays such as organic modified montmorillonite 
(MMT) are of particular interest due to their abundance, 
low cost and geometrical features [4]. Since 
nanocomposites are a new type of materials, it is 
important to have information about their effect on 
polymer stability during ageing under different 
conditions because the resistance to ageing, especially 
to UV light, is a key factor for outdoor applications [5, 
10, 11]. In many cases, accelerated weathering is used 
to predict the lifetime of polymers under service 
conditions. Most accelerated weathering devices 
(Weather-Ometer, Xenontester, Suntester, etc.) show a 
lack of correlation between the stabilities measured 
with them and those that occur outdoor during natural 
exposure [12, 13]. However, it was demonstrated that 
filtered xenon lamps have an spectrum, which is 
comparable to the UV spectrum of the sun and if 
operated at not too high temperatures, is expected to 
represent better outdoor ageing. Consequently, under 
these experimental conditions, the results obtained can 
be correlated with the results of natural exposure [14]. 
In previous works, it has been suggested that the 
photolysis mechanism of PLA proceeds via “Norrish 
type photo cleavage”, specially Norrish II reaction, 

DAVID  PUBLISHING 

D 



UV Stability of Poly(Lactic Acid) Nanocomposites 

  

76

which was based on the increase of the absorption 
bands corresponding to hydroxyl and acrylic groups in 
infra-red (IR) spectra [3, 15, 16]. Janorkar, et al. [17] 
reported the occurrence of two degradation 
mechanisms of PLA under UV radiation. The first 
mechanism involves a photolysis reaction leading to 
breakage of the backbone C-O bond. The second one 
involves photo-oxidation of PLA leading to the 
formation of hydroperoxide and its subsequent 
degradation to compounds containing carboxylic acid 
and diketone end groups. Furthermore, the photolysis 
of the diketone may lead to the homolytic cleavage of 
the C-O bond between the two carbonyl groups, 
resulting in two carbonyl radicals. This radical pair can 
undergo cage escape to form several 
photo-decomposed products [2, 17]. Recently, 
Gardette, et al. [10] proposed a mechanism based on 
the formation of an anhydride. This mechanism 
involves a classical hydrogen abstraction on the 
polymeric backbone at the tertiary carbon in the 
α-position of the ester function leading to 
macroradicals formation. It is postulated that 
initiation of the photochemical reaction results from 
the presence of chromophoric defects in the polymer 
at very low concentrations. This mechanism 
contradicts the older mechanism reported in the 
literature, which is associated with a Norrish II-type 
photo-cleavage [1, 3, 16]. 

While there are several research studies on UV 
degradation of PLA [1, 3, 5, 15, 16, 18, 19], only a few 
are published dealing with PLA nanocomposites [2, 5]. 
Therefore, this study aims to investigate the effect of 
the addition of different MMT on the UV stability of 
PLA. Nanocomposites were prepared by melt mixing 
and the photodegradation of PLA and nanocomposites 
was performed in a Xenotest. The samples collected 
along the time were characterized by Fourier transform 
infrared spectroscopy (FTIR) and 1hydrogen-nuclear 
magnetic resonance (1H-NMR) spectroscopy, 
differential scanning calorimetry (DSC) and intrinsic 
viscosity measurements. 

2. Experiments 

2.1 Materials 

A commercial grade PLA (3251D) was supplied by 
NatureWorks LLC (USA). The three nanoclays 
(modified MTT) used were supplied by Southern Clay 
Products (USA), Cloisite 30B (C30B) and Cloisite 15A 
(C15A), and by Laviosa Mineraria (Italy), Dellite 43B 
(D43B). Chloroform and deuterated chloroform were 
purchased from Lab-Scan and Acros Organics, 
respectively, and used as received. 

2.2 Sample Preparation 

Nanocomposites were prepared by melt mixing 
following the next steps. PLA pellets and nanoclays 
were dried in a vacuum oven at 60 °C for 12 h. PLA 
with 3 wt.% of C15A, C30B and D43B were pre-mixed 
and introduced in a Haake batch mixer (HAAKE 
Rheomix 600 OS; volume 69 mL) equipped with two 
rotors running in a counter-rotating way. The rotor 
speed was 80 rpm and the set temperature was 190 °C. 
After 5 min of mixing time, the total sample was 
removed.  

The prepared nanocomposites were pressed into thin 
films by compression moulding under 200 °C and 30 
ton for 60 s. The thickness of each film (ca. 40 μm) was 
measured with a pachymeter Mitutoyo. 

2.3 Photodegradation 

The accelerated weathering of PLA and PLA 
nanocomposites were carried out in a XenoTest 150 S 
chamber from Heraeus (Original Hanau) equipped with 
a filtered Xenon lamp with an intensity of 60 Wm-2 
according to standard procedures [20]. The light of the 
xenon lamp was filtered under 300 nm with an UV 
window combined with six IR filter glasses. The 
XenoTest creates an accelerated environment of the 
natural weathering conditions, simulating materials 
conditions during its lifetime, i.e., daylight exposure to 
heat, oxygen and humidity. The accelerated weathering 
conditions are listed in Table 1.  
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the nanoclay C30B and correspondent nanocomposite 
prepared with 3 wt.%. The change in diffraction angle 
allows to evaluate the dispersion of mineral sheets 
within the polymer matrix [2, 23]. Comparing 
diffraction peak (001) plane of powder nanoclays and 
nanocomposites, a shift to lower angles was observed 
for all prepared nanocomposites. The decrease of the 
diffraction angles means that PLA macromolecules 
were inserted between the nanoclay layers and 
nanocomposites with an intercalated structure were 
obtained. The d-spacing values (basal distance between 
clay layers) were calculated using Bragg’s law (λ = 
2dsinθ; d is the interlayer d-spacing and λ is the 
wavelength). The calculated d001 distance expands 1.60 
nm for PLA/C30B, 0.62 nm for PLA/C15A and 1.65 
nm for PLA/D43B. According to these results, the 
nanocomposites prepared with C30B and D43B 
exhibited higher interlayer space than with C15A.  

SEM results obtained in a previous work [24] 
showed homogeneous nanoclay dispersion in all 
samples, excepted in PLA/C15A nanocomposites, 
where agglomerates were observed. 

3.2 1H NMR Analysis 

Analyses by 1H NMR were performed on the initial 
and degraded samples to evaluate if changes in the 
chemical structure of PLA occurred during 
photodegradation. The chemical shift (δ) values 
obtained in the 1H NMR spectra and the corresponding 
groups are listed in Table 2. It can be noticed that the 
assignments obtained are in well agreement with Ref. 
[25]. No changes in chemical shift values were 
observed between PLA 0 h, PLA 300 h and PLA 600 h. 
However, there are differences in the signal intensities 
and in proton area ratio (CH3/CH), which decrease with 
degradation. This ratio has a theoretical value of 3 and 
it must remain constant if degradation takes place upon 
ester linkage degradation, hydrolysis or radical 
degradation, among others [26]. According to Ref. [26] 
only pyrolytic elimination (which is responsible for the 
transformation  of CH-CH3  into CH=CH2)  can  be  

Table 2  1H NMR data of PLA samples. 

 δ CH3 (ppm) δ CH (ppm) Relative area CH3/CH
PLA 0 h 1.56-1.60 5.14-5.21 3.71 
PLA 300 h 1.58-1.60 5.14-5.21 3.26 
PLA 600 h 1.58-1.60 5.13-5.20 3.18 

 

responsible for a lower ratio. Since, there was no signal 
for CH2 protons in 1H NMR, this mechanism, if present, 
must be secondary and of minor importance during the 
photodegradation pathway.  

3.3 Intrinsic Viscosity Changes 

Intrinsic viscosity (η) measurements were also 
performed in initial and degraded samples along time 
and the results are presented in Fig. 2. Before 
degradation all nanocomposites exhibited a lower η 
than PLA. This decrease might be related with chain 
scission that occurred during its preparation, due to 
high temperature, shear during melt mixing and 
reactions between PLA and reactive groups of the clay 
modifiers [2]. A very high sensitivity of PLA to 
thermal degradation during melt processing has been 
reported, even in the presence of antioxidant [27]. It is 
also published that hydrolysis of PLA matrix is 
accelerated by high temperature, shear and the reactive 
groups of the modifiers of each nanoclay [2, 21].  

PLA viscosity decreases slightly after 200 h of 
photodegradation and then this value remain 
practically unchanged until 600 h. Contrarily, 
nanocomposites viscosity gradually decreases with 
increasing degradation time and the major decrease 
was observed  for  samples  prepared  with C30B and  
 

 
Fig. 2  Intrinsic viscosity of initial and along degradation 
for PLA and PLA with nanoclays. 
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C15A. The reduction of PLA and PLA nanocomposites 
viscosity indicates that chain scission plays an 
important role in the degradation mechanism. This 
result is in agreement with the literature, where it is 
reported that photodegradation of PLA causes chain 
cleavage and formation of lower molecular weight 
compounds [1, 18]. 

As can be seen in Fig. 2, the absolute slope of the 
lines adjusted to the experimental values, which is an 
indicator of photodegradation rate, is higher for 
nanocomposites with C30B and C15A. A possible 
explanation for higher chain scission in the sample 
containing C30B is the presence of hydroxyl groups 
and slightly higher content of metal ions in this 
nanoclay, which are known to accelerate the 
photodegradation. The decrease in molecular weight of 
the nanocomposite containing C15A was not expected 
since this nanoclay does not present reactive functional 
groups. Therefore, this can be probably associated to a 
higher amount of more unstable quaternary 
ammonium surfactant. 

3.4 Chemical Structure Analysis 

FTIR spectra of PLA and PLA nanocomposites with 
C30B were obtained before and after 300 and 600 h of 
photodegradation. The infrared spectra of PLA present 
(Fig. 3) the characteristic bands of the polymer [2, 8, 25, 
28-30] identified in a previous work [24]. No significant 
changes can be detected after degradation; no vibration 
modes are suppressed or appear due to degradation. 
Only a slight increase of the intensity of some bands 
was perceived. This is in line with viscosity 
measurements, as photodegraded PLA did not show 
significant decrease in intrinsic viscosity. 

Fig. 4 shows the infrared spectra obtained for 
nanocomposite PLA/C30B before and after 
photodegradation. Even though the overall response of 
the FTIR spectra of non-degraded sample is quite 
similar to the one obtained for PLA (Fig. 3), the 
intensity of the bands increases after degradation. An 
enlargement of the band corresponding to C=O and the 

appearance and increase of a shoulder at 1,845 cm-1 can 
be noticed along degradation time. 

The photodegradation of PLA was previously 
described in literature to occur according to a Norrish II 
mechanism of carbonyl polyester [1, 3, 16]. This 
mechanism involves chain cleavage and the formation 
of C=C bonds and hydroperoxides O-H at newly 
formed chain terminals. However, this mechanism was 
proposed based on results obtained with a light source 
emitting in the UV domain from 220 nm [16], thus, in a 
region where the carbonyl groups of aliphatic polyester  
 

 
Fig. 3  FTIR spectra of PLA obtained before and after 300 
and 600 h of photodegradation in three different region: (a) 
4,000-2,800 cm-1; (b) 1,900-1,600 cm-1 and (c)1,500-500 cm-1. 
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Fig. 4  FTIR spectra of PLA with 3 wt.% C30B obtained 
before and after 300 and 600 h of photodegradation in three 
different region: (a) 4,000-2,800 cm-1, (b) 1,900-1,600 cm-1 
and (c) 1,500-500 cm-1. 
 

can absorb energy and consequently lead to 
photoreaction [5, 10]. These conditions do not simulate 
natural outdoor exposure, thus in this work the UV 
light wavelengths bellow 300 nm were filtered. 

Based on the formation of an anhydride, new 
mechanisms have been proposed [10, 17] and Fig. 5 
presents PLA photodegradation mechanism proposed 
by Bocchini, et al. [5]. Usually begins by radical 
formed from impurities by UV light or thermal 
decomposition. The reaction with higher probability is 
the abstraction of tertiary hydrogen from PLA chain 
with the formation of a tertiary radical P• (1) (Fig. 5). 

This radical can react with oxygen to form a peroxide 
radical (2) (Fig. 5), which may easily abstract another 
hydrogen from a tertiary carbon with the formation of 
an hydroperoxide and the initial radical P• (3) (Fig. 5). 
Then, the hydroperoxide undergoes photolysis (4) 
(Fig. 5) with the formation of the HO• and a PO• 
radical that can further evolve by β-scission (5) (Fig. 5). 
Taking into account the stability of the different 
fragments, the most probable β-scission appears to be 
the (5b) (Fig. 5) reaction, leading to the formation of 
anhydride groups. 

Based on the literature data, the band that appeared 
at 1,845 cm-1 is assigned to anhydride functions [5, 10], 
which is in concordance with pathway (5b) (Fig. 5) in 
the photodegradation mechanism proposed by 
Bocchini, et al. [5] and presented in Fig. 5. 

Results obtained with incorporation of C15A and 
D43B were similar to the one with C30B (results not 
shown).  

According to Refs. [8, 25, 29, 31], there are bands 
related to amorphous phase of PLA (955 and 869 
cm-1) and to crystalline phase (755, 912 and 923 cm-1). 
As all these bands are present in FTIR spectra of the 
PLA and PLA nanocomposites and all of them increase 
with degradation time, the results were not elucidative 
in what concerns to the effect of photodegradation on 
crystallinity. In order to overcome this problem, DSC 
measuments were performed. 

3.5 Thermal Analysis 

Thermal properties of PLA and PLA 
nanocomposites were evaluated by DSC. The 
crystallinity degree (χ) of PLA and PLA 
nanocomposites before and after 600 h of 
photodegradation is depicted in Fig. 6. It is known that 
the addition of the nanoclays promotes the extent of 
crystallization of PLA, indicating that they can act as 
nucleating agents [9, 22]. Even though this was 
observed for the nanocomposites prepared with C30B 
and D43B, it was not for the one with C15A, in this 
case the crystallinity was lower than for PLA. This can  
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photodegradation according to a mechanism 
previously proposed. DSC results evidence the 
nucleation effect of the nanoclays and that the 
formation of lower molecular weight compounds 
during photodegradation caused an increase of the 
crystallinity degree of the samples. 
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