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Abstract: The most common noises in ECG (electrocardiogram) signal processing are BW (baseline wandering) and the 50 or 60 Hz

PLI (power line interferences). In order to remove these two major source of noises, we have used the recent powerful DWT (discrete
wavelet transform) signal processing in ECG signals which are obtained from MIT-BIH Arrhythmia Database. The results indicate
that DWT is a good method for filtering noises without changing the morphology of ECG, and can be applied to all types of ECG

signals, whether normal or presenting arrhythmias.
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1. Introduction

Muscular contraction is associated with electrical
changes known as depolarization. The ECG is a
measure of this electrical activity associated with the
heart. The ECG is measured at the body surface and
results from electrical changes associated with
activation first of the two small heart chambers, the
atria, and then of the two larger heart chambers, the
ventricles. Analysis of the local morphology of the
ECG signal and its time varying properties has
produced a variety of clinical diagnostic tools. It is
also an essential tool to allow monitoring patients at
home, thereby advancing telemedicine applications.

Producing an algorithm for the detection of the P
wave, QRS complex and T wave in an ECG is a
difficult problem due to the time varying morphology
of the signal subject to physiological conditions and
the presence of noise. There are several types of
noises that affect the ECG. The BW (baseline wander)
and 50 or 60 Hz interferences are some of these types.
The goal of ECG enhancement is to separate the valid

ECG from the undesired artifacts so as to present a
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signal that allows easy visual interpretation [1].
2. ECG Wave Pattern
2.1 ECG Signal

ECG is a recording of biopotential signal that is
generated by electrical cardiac activity and it is used
by clinicians to identify various heart diseases such as
myocardial infarction, conduction defects and
arrhythmia. ECG signal consists of a well defined
successive set of: P wave, PQ interval (or PR), QRS
complex, ST segment and T wave.

The P wave represents the depolarization of left and
right atria that generates the contraction of the atria
and the ejection of blood to the ventricles. The QRS
segment represents the depolarization of the left and
right ventricles that generates the contraction of the
ventricles and the ejection of blood to the aorta and
pulmonary artery. The T wave represents the period of
time when the ventricles repolarize. Fig. 1 shows a

typical ECG signal.
2.2 Power Spectrum of the ECG

The ECG waveform contains, in addition to the
QRS complex, P and T waves, 60 Hz noise from

power line interferences, EMG from muscles, motion
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Fig. 1 Typical ECG signal with P-wave, QRS complex,

and T-wave (sampling frequency is 360 Hz).
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Fig. 2 Relative power spectra of QRS complex, P and T
waves, muscle noise and motion artifacts based on an
average of 150 beats.

artifact from the electrodes and skin interfaces, and
possibly other interferences.

Fig. 2 summarizes the relative power spectrum of
the ECG, QRS complexes, P and T waves, motion
artifact, and muscle noise [2].

The recorded ECG signal is often contaminated by
different types of noises and artifacts that can be
within the frequency band of ECG signal, which may
change the characteristics of ECG signal. Hence it is
difficult to extract useful information of the signal.
The corruption of ECG signal is due to following

major noises [3-5].

2.3 Baseline Wander

BW of ECG signals is usually caused by respiration
or movement of the subject and appears as a low
frequency artifact. The removal of this disturbance is
an important step in ECG signal analysis, not only to
produce a stable signal for subsequent automatic
processing, but also for reliable visual interpretation.
As the frequency of ECG signals varies with time,
using an ordinary high-pass filter can distort the
waveform. As an alternative, an improved method

involving DWT is proposed.
2.4 Power Line Interferences

Power line interferences contains 60 Hz pickup (in
USA) or 50 Hz pickup (in Morocco) because of
improper grounding. It is indicated as an impulse or
spike at 60 Hz/50 Hz harmonics, and will appear as
of the

fundamental frequency. Its frequency content is 60

additional spikes at integral multiples
Hz/50 Hz and its harmonics, amplitude is up to 50
percent of peak-to-peak ECG signal amplitude. A 60
Hz notch filter can be used to remove the power line
interferences, but in this work the proposed method

using DWT yields good results.
3. Wavelet Transform

The wavelet transform has emerged over recent
years as a key time-frequency analysis and coding tool
for the ECG. Its ability to separate out pertinent signal
components has led to a number of wavelet-based
techniques which supersede those based on traditional
Fourier methods. In its continuous form, the CWT
allows a powerful analysis of non-stationary signals,
making it ideally suited for the high-resolution
interrogation of the ECG over a wide range of
applications. In its discrete form, the DWT provides
the basis of powerful methodologies for partitioning
pertinent signal components which serve as a basis for

potent compression strategies.
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3.1 Continuous Wavelet Transform

The CWT transforms a continuous signal into
highly redundant signal of two continuous variables:
translation and scale. The resulting transformed signal
is easy to interpret and is valuable for time-frequency
analysis. The continuous wavelet transform of
continuous function, x(f) relative to real-valued

wavelet, y() is described by:

+o0

W, (s,7) = jx(t)y/;; (t)dt (1)
where,
1 t—1
L) =—=y(— 2
v, () rSl//( . ) ()

s and 7 are called scale and translation parameters,
Wy(s,7)
transform coefficients and y is the fundamental

respectively. denotes  the  wavelet

mother wavelet.
3.2 Discrete Wavelet Transform

The DWT has become a powerful technique in
biomedical signal processing. It can be written on the
same form as Eq. (1), which emphasizes the close
relationship between CWT and DWT. The most
obvious difference is that the DWT uses scale and
position values based on powers of two.The values of
sand rare: s =2, t=k*2 and (j, k) €Z° as shown in
Eq. (3).

1 t—k=*2’
W, ()= \/;‘//( )

The key issues in DWT and inverse DWT are

€)

signals decomposition and reconstruction, respectively.

The Dbasic idea
reconstruction is low-pass and high-pass filtering with

behind decomposition and

the wuse of down  sampling and up

sampling ,respectively. The result of wavelet
decomposition is hierarchically organized
decompositions. One can choose the level of

decomposition j based on a desired cutoff frequency.
Fig. 3a shows an implementation of a three-level
forward DWT based on a two-channel recursive filter
bank, where hy(n) and h;(n) are low-pass and

high-pass analysis filters, respectively, and the block
12 represents the down sampling operator by a factor
of 2. The input signal x(n) is recursively decomposed
into a total of four subband signals: a coarse signal
Cs(n), and three detail signals, d;(n), dy(n), and d;(n),
of three resolutions. Fig. 3b shows an implementation
of a three-level inverse DWT based on a two-channel

recursive filter bank, where }Nlo(n) and /Z(n) are
low-pass and high-pass synthesis filters, respectively,
and the block 12 represents the up sampling operator
by a factor of 2. The four subband signals Cs(n), d3(n),
dy(n) and dy(n) are
reconstruct the output signal X (7). The four finite

recursively combined to

impulse response filters satisfy the following
relationships:

hy(n) = (=1)"ho(L+1-n) 4)

o () = hy(L+1=n) ®)

hy(n)=(=1)""hy(L+1-n) ©6)
where, L is the length of filters, and n = 1,2,...,L.
So that the output of the inverse DWT is identical
to the input of the forward DWT [6, 7].

4. Methodology

In the simulation studies, test ECG signals came
from MIT-BIH Arrhythmia Database. They concern
leads V1 and D2, and they were digitized at 360
samples per second with 11 bit resolution over +5
mV range. Sample values thus ranged from 0 to 2,047

dy ()

dy(n) ¥ 12
®)
Fig. 3 A three-level two-channel iterative filter bank: (a)

forward DWT; (b) inverse DWT.
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inclusive, with a value of 1,024 corresponding to 0
mV([8].

4.1 Baseline Wander

Baseline drift having a frequency range of
(OHz,...,0.5Hz). In accordance with Nyquist’s rule, if
the original signal has a highest frequency fmax, it
requires a sampling frequency f; > 2fn.x. Hence, at each
decomposition level j, the frequency axis is recursively
divided into halves at the ideal cut-off frequencies f;=
a2 [91.

The ECG records taken from the MIT-BIH
arrhythmia database are sampled at 360 Hz (f; =
360Hz). The maximum frequency is on the order of
130Hz (fmax = 130Hz) [9, 10]. Therefore, the range of
real frequency components of the signals is between 0
Hz and 130 Hz. The correspondence between DWT
coefficients and range of frequencies is
inTablel.

The proposed method for cancelling the BW is

given

based on wavelet decomposition up to level 8, which
generates a set of approximation coefficients(C8), and
of detail coefficients(d/,...,d§). By
cancellation of approximations, the filtered signal is

eight sets

recovered from the details only. This is equivalent to a
high-pass filter cutoff frequency f; = fnax/256.

Fig.4 shows an example of the BW removal. The
original ECG signal has low-frequency fluctuations;
after removing it, the filtered ECG signal appears

centered around a horizontal line.
4.2 Power Line Interferences

The ECG signals from the database MIT-BIH are
affected by 60Hz PLI. This noise was filtered with an
analog notch filter, but its influence still appears. We
propose, therefore, to add to the test signals, a
simulated noise of this form:

n(t) = A#*sin(27ft) @)
where, A4 is the amplitude, and f;is the 60Hz frequency
of the simulated noise.

The noisy signal may then be expressed by:

Table 1 Range frequencies of DWT coefficients.

DWT coefficients Range frequencies
dl 65Hz,...,130Hz

d2 32.5Hz,...,65Hz

d3 16.25Hz, ...,32.5Hz
d4 8.125Hz,...,16.25Hz
ds 4.062Hz,...,8.125Hz
dé6 2.031Hz,...,4.062Hz
d7 1.015Hz,...,2.031Hz
ds 0.507Hz,...,1.015Hz
C8 0Hz,...,0.507 Hz

g 1500

3

>

2 1000

Q

&

)

500
0 2000 4000 6000 8000

Sample

@

10000 12000 14000

g |
< |
i LA L
=3 |
§ | | | | | |
n -500 | I | I L L
0 2000 4000 6000 8000 10000 12000 14000
Sample
(b)
o 1200
2
>
o 1000
£
(]

800
0 2000 4000 6000 8000

Sample
(©)
Fig. 4 ECG 117.dat [10000...24000]: (a) noised ECG with

BW; (b) filtrered ECG; (c) removed baseline wander.

x(t) =ecg(t) +n(t) ®)
where, ecg(f) is the signal from the MIT-BIH
database.

10000 12000 14000

The filtering process is done in four steps:

Step 1: At level 1, the signal is decomposed into a
set of approximation coefficients (C/), and a set of
detail coefficients (d7).

Step 2: Each set of coefficients of level 1 is
decomposed into two other sets (Level 2).

Step 3: The coefficients of level 2 are decomposed
into two new sets (Level 3).

Step 4: The filtered signal is reconstructed by
removing coefficients containing the 60Hz power line
noise in their range frequency.

The correspondence between decomposition levels
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and DWT coefficients is given in Table2.

In Table 3, we can see the correspondence between
DWT coefficients and range frequencies.

In our case, the denoised signal is recovered from
all coefficients except details d33 (48.75 Hz,..., 65
Hz).

Fig. 5 shows an example of the 60 Hz power line
noise removal.

Figs. 6-8 show the power spectrum density at 60 Hz
of noised ECG (117.dat), filtered ECG and 60 Hz
power line noise. The amplitude 4 was fixed at 50 (4
= 50) respectively.

4.3 Denoising Evaluation Criteria

To analyze and evaluate the filtering performance,
we used PSD (power spectrum density) [11], percent
of COR (cross-corelation coefficient) [12, 13] and
PRD (percent of root squared mean difference) [14]

as a quantitative criteria.
N

2 x(m) y(n)
COR =100 .——=! ©

D x ()Y yi(n)

n=1

S (x(n) — y(n)?
PRD =100 - |2=L (10)

D x ()

Table 2 DWT coefficients of different levels.

Level DWT coefficients

1 Cl dl

2 C20 dz21 d22 d23

3 C30 d31 d32 d33 d34 d35 d36 d37

Table 3 Range frequencies of DWT coefficients.
DWT coefficients

Range frequencies

C30 0Hz,...,16.25Hz
d31 16.25Hz,...,32.5Hz
d32 32.5Hz,...,48.75Hz
d33 48.75Hz,...,65Hz
d34 65Hz,...,81.25Hz
d3s 81.25Hz,...,97.5Hz
d36 97.5Hz,...,113.75Hz
d37 113.75Hz,...,130Hz
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Fig. 5 ECG signal 117.dat [1..1440]: (a) noised ECG; (b)
filtred ECG; (c) 60 Hz power line noise; (d) 60 Hz noise
zoomed in 0.5s.
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Fig. 6 Power spectrum density of noised ECG 117.dat.

where, x(n) is the original signal without noises and
y(n) is the filtered signal.

x(n) is obtained by applying our method in a first
step on a ECG records (MIT-BIH) with a natural
baseline noise. y(n) is obtained by applying the
method in a second step on x(n) noised by the natural
base line drift or artificial 60 Hz interferences.

COR reflects the similitude between the two signals.
If the two signals are identical, the value of COR is
100%.
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Fig. 7 Power spectrum density of Filtrered ECG 117.dat.
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Fig. 8 Power spectrum density of removed 60 Hz PLI.

PRD reflects the relative distance between the two
signals. If they are identical, the value of PRD is 0%.

The PSD is evaluated at 0.5 Hz for BW, and at 60
Hz for PLI using Welch method.

5. Results and Discussions

After testing several types of wavelets (Symlet,
Coiflet, Daubechies,...), the best results are obtained
with the Daubechies wavelet db 45.

Table 4 represents the PSD results obtained for five
signals from the MIT-BIH database, with a natural
baseline drift; it concerns records: 117, 119, 203, 207
and 210.

Table 5 represents the PSD results for five records,
117, 119, 203, 207, and 210 with an artificial 60 Hz
noise for different amplitudes.

Table6 represents the COR and PRD criteria for

evaluating both baseline wander and 60 Hz
interferences filtering.

The experimental results indicate that this method
performs accurate removal (COR = 100%) of ECG
BW, while only 92.2% for median filtering method
and 99.6% for EMD (empirical mode decomposition)
correction method [13].

The results presented in Table4 show a significant
attenuation of the PSD after filtering. After baseline
suppression, all signals are aligned around the

horizontal line.

Table 4
suppression.

PSD criteria for evaluating the baseline

PSD at 0.5 Hz (dB/Hz)

ECG - - -
Before filtering  After filtering  Attenuation

117 55 27 28

119 545 31 235

203 557 21.6 34.1

207 558 26 29.8

210  55.8 17.8 38

Table 5 PSD criteria for evaluating 60 Hz noise

suppression.

PSD at 60 Hz (dB/Hz)

ECG Amplitude A Before After .
. . Attenuation
filtering filtering
20 23 -30 53
117
100 36 -30 66
20 23 -23 46
119
100 36 -22 58
20 23 -23 46
203
100 38 -23 61
2 2 2 4
207 0 3 5 8
100 36 -25 61
20 23 -30 53
210
100 36 -30 66
Table 6 COR & PRD criteria for evaluating noise

suppression.

Baseline wander 60 Hz interferences

ECG COR (%) PRD (%) COR (%) PRD (%)
117 100 0 100 0,152
119 100 0 100 0,290
203 100 1,44x10"% 100 0,691
207 100 1,93x10"% 100 0,221
210 100 1,57x.10" 100 0,230
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For the 60 Hz power line noise, we see that it is
completely removed regardless of its magnitude, and
we get the sinusoidal shape of the noise. The PSD
after filtering has the same value of each signal.

It is established in Ref. [14] that if the PRD value is
between 0% and 9%, the quality of the reconstructed
signal is either“very good” or “good”, whereas if the
value is greater than 9% its quality group cannot be
determined. As we are strictly interested in very good
and good reconstructions, it is taken that the PRD
value, as measured with Eq. (10), must be less than
9%. Table 6 shows that our method performs a COR
equal to 100%, and a PRD equal to 0.691% at most.
This reflects that the two signals, before and after

denoising, are identical.
6. Conclusion

In this work, we have presented a new approach
based
denoising the ECG signals. The results illustrate that

on discrete wavelet decomposition for
the DWT is an efficient technique to filter noises
without altering a real morphology ECG signals
because the duration, amplitude and shape of the P
wave, QRS complex and T wave are not modified.
This technique applies to all types of ECG signals,
whether they are normal or presenting arrhythmias.
Hence, this process allows cardiovascular experts to
make a proper analysis. It can be integrated in

automatic ECG analysis systems.
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