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Abstract: The most common noises in ECG (electrocardiogram) signal processing are BW (baseline wandering) and the 50 or 60 Hz 
PLI (power line interferences). In order to remove these two major source of noises, we have used the recent powerful DWT (discrete 
wavelet transform) signal processing in ECG signals which are obtained from MIT-BIH Arrhythmia Database. The results indicate 
that DWT is a good method for filtering noises without changing the morphology of ECG, and can be applied to all types of ECG 
signals, whether normal or presenting arrhythmias. 
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1. Introduction 

Muscular contraction is associated with electrical 

changes known as depolarization. The ECG is a 

measure of this electrical activity associated with the 

heart. The ECG is measured at the body surface and 

results from electrical changes associated with 

activation first of the two small heart chambers, the 

atria, and then of the two larger heart chambers, the 

ventricles. Analysis of the local morphology of the 

ECG signal and its time varying properties has 

produced a variety of clinical diagnostic tools. It is 

also an essential tool to allow monitoring patients at 

home, thereby advancing telemedicine applications.  

Producing an algorithm for the detection of the P 

wave, QRS complex and T wave in an ECG is a 

difficult problem due to the time varying morphology 

of the signal subject to physiological conditions and 

the presence of noise. There are several types of 

noises that affect the ECG. The BW (baseline wander) 

and 50 or 60 Hz interferences are some of these types. 

The goal of ECG enhancement is to separate the valid 

ECG from the undesired artifacts so as to present a 
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signal that allows easy visual interpretation [1]. 

2. ECG Wave Pattern 

2.1 ECG Signal  

ECG is a recording of biopotential signal that is 

generated by electrical cardiac activity and it is used 

by clinicians to identify various heart diseases such as 

myocardial infarction, conduction defects and 

arrhythmia. ECG signal consists of a well defined 

successive set of: P wave, PQ interval (or PR), QRS 

complex, ST segment and T wave. 

The P wave represents the depolarization of left and 

right atria that generates the contraction of the atria 

and the ejection of blood to the ventricles. The QRS 

segment represents the depolarization of the left and 

right ventricles that generates the contraction of the 

ventricles and the ejection of blood to the aorta and 

pulmonary artery. The T wave represents the period of 

time when the ventricles repolarize. Fig. 1 shows a 

typical ECG signal. 

2.2 Power Spectrum of the ECG 

The ECG waveform contains, in addition to the 

QRS complex, P and T waves, 60 Hz noise from 

power line  interferences, EMG  from muscles,  motion 
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inclusive, with a value of 1,024 corresponding to 0 

mV[8]. 

4.1 Baseline Wander 

Baseline drift having a frequency range of 

(0Hz,...,0.5Hz). In accordance with Nyquist’s rule, if 

the original signal has a highest frequency fmax, it 

requires a sampling frequency fs ≥ 2fmax. Hence, at each 

decomposition level j, the frequency axis is recursively 

divided into halves at the ideal cut-off frequencies fj = 

fmax/2
j [9]. 

The ECG records taken from the MIT-BIH 

arrhythmia database are sampled at 360 Hz (fs = 

360Hz). The maximum frequency is on the order of 

130Hz (fmax = 130Hz) [9, 10]. Therefore, the range of 

real frequency components of the signals is between 0 

Hz and 130 Hz. The correspondence between DWT 

coefficients and range of frequencies is given 

inTable1. 

The proposed method for cancelling the BW is 

based on wavelet decomposition up to level 8, which 

generates a set of approximation coefficients(C8), and 

eight sets of detail coefficients(d1,…,d8). By 

cancellation of approximations, the filtered signal is 

recovered from the details only. This is equivalent to a 

high-pass filter cutoff frequency fc = fmax/256. 

Fig.4 shows an example of the BW removal. The 

original ECG signal has low-frequency fluctuations; 

after removing it, the filtered ECG signal appears 

centered around a horizontal line. 

4.2 Power Line Interferences 

The ECG signals from the database MIT-BIH are 

affected by 60Hz PLI. This noise was filtered with an 

analog notch filter, but its influence still appears. We 

propose, therefore, to add to the test signals, a 

simulated noise of this form:  

)2sin()( 0tfAtn 
       

 (7) 

where, A is the amplitude, and f0 is the 60Hz frequency 

of the simulated noise. 

The noisy signal may then be expressed by: 

Table 1  Range frequencies of DWT coefficients.  

DWT coefficients Range frequencies 

d1 65Hz,…,130Hz 

d2 32.5Hz,…,65Hz 

d3 16.25Hz,…,32.5Hz 

d4 8.125Hz,…,16.25Hz 

d5 4.062Hz,…,8.125Hz 

d6 2.031Hz,…,4.062Hz 

d7 1.015Hz,…,2.031Hz 

d8 0.507Hz,…,1.015Hz 

C8 0Hz,…,0.507 Hz 
 

 
Fig. 4  ECG 117.dat [10000…24000]: (a) noised ECG with 
BW; (b) filtrered ECG; (c) removed baseline wander.  
 

)()()( tntecgtx            (8) 

where, ecg(t) is the signal from the MIT-BIH 

database. 

The filtering process is done in four steps: 

Step 1: At level 1, the signal is decomposed into a 

set of approximation coefficients (C1), and a set of 

detail coefficients (d1). 

Step 2: Each set of coefficients of level 1 is 

decomposed into two other sets (Level 2). 

Step 3: The coefficients of level 2 are decomposed 

into two new sets (Level 3). 

Step 4: The filtered signal is reconstructed by 

removing coefficients containing the 60Hz power line 

noise in their range frequency. 

The correspondence between decomposition levels 
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and DWT coefficients is given in Table2. 

In Table 3, we can see the correspondence between 

DWT coefficients and range frequencies.  

In our case, the denoised signal is recovered from 

all coefficients except details d33 (48.75 Hz,…, 65 

Hz).  

Fig. 5 shows an example of the 60 Hz power line 

noise removal. 

Figs. 6-8 show the power spectrum density at 60 Hz 

of noised ECG (117.dat), filtered ECG and 60 Hz 

power line noise. The amplitude A was fixed at 50 (A 

= 50) respectively. 

4.3 Denoising Evaluation Criteria 

To analyze and evaluate the filtering performance, 

we used PSD (power spectrum density) [11], percent 

of COR （cross-corelation coefficient) [12, 13] and 

PRD (percent of root squared mean difference） [14] 

as a quantitative criteria. 
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Table 2  DWT coefficients of different levels.  

Level DWT coefficients 

1 C1 d1 

2 C20 d21 d22 d23 

3 C30 d31 d32 d33 d34 d35 d36 d37 
 

Table 3  Range frequencies of DWT coefficients.  

DWT coefficients Range frequencies 

C30 0Hz,…,16.25Hz 

d31 16.25Hz,…,32.5Hz 

d32 32.5Hz,…,48.75Hz 

d33 48.75Hz,…,65Hz 

d34 65Hz,…,81.25Hz 

d35 81.25Hz,…,97.5Hz 

d36 97.5Hz,…,113.75Hz 

d37 113.75Hz,…,130Hz 

 
Fig. 5  ECG signal 117.dat [1..1440]: (a) noised ECG; (b) 
filtred ECG; (c) 60 Hz power line noise; (d) 60 Hz noise 
zoomed in 0.5 s. 
 

 
Fig. 6  Power spectrum density of noised ECG 117.dat. 
 

where, x(n) is the original signal without noises and 

y(n) is the filtered signal. 

x(n) is obtained by applying our method in a first 

step on a ECG records (MIT-BIH) with a natural 

baseline noise. y(n) is obtained by applying the 

method in a second step on x(n) noised by the natural 

base line drift or artificial 60 Hz interferences.  

COR reflects the similitude between the two signals. 

If the two signals are identical, the value of COR is 

100%. 
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Fig. 7  Power spectrum density of Filtrered ECG 117.dat. 
 

 
Fig. 8  Power spectrum density of removed 60 Hz PLI. 
 

PRD reflects the relative distance between the two 

signals. If they are identical, the value of PRD is 0%. 

The PSD is evaluated at 0.5 Hz for BW, and at 60 

Hz for PLI using Welch method. 

5. Results and Discussions 

After testing several types of wavelets (Symlet, 

Coiflet, Daubechies,…), the best results are obtained 

with the Daubechies wavelet db 45. 

Table 4 represents the PSD results obtained for five 

signals from the MIT-BIH database, with a natural 

baseline drift; it concerns records: 117, 119, 203, 207 

and 210. 

Table 5 represents the PSD results for five records, 

117, 119, 203, 207, and 210 with an artificial 60 Hz 

noise for different amplitudes.  

Table6 represents the COR and PRD criteria for 

evaluating both baseline wander and 60 Hz 

interferences filtering. 

The experimental results indicate that this method 

performs accurate removal (COR = 100%) of ECG 

BW, while only 92.2% for median filtering method 

and 99.6% for EMD (empirical mode decomposition) 

correction method [13]. 

The results presented in Table4 show a significant 

attenuation of the PSD after filtering. After baseline 

suppression, all signals are aligned around the 

horizontal line. 
 
Table 4  PSD criteria for evaluating the baseline 
suppression.  

ECG 
PSD at 0.5 Hz (dB/Hz) 

Before filtering After filtering Attenuation 

117 55 27 28 

119 54.5 31 23.5 

203 55.7 21.6 34.1 

207 55.8 26 29.8 

210 55.8 17.8 38 

 
Table 5  PSD criteria for evaluating 60 Hz noise 
suppression.  

ECG Amplitude A
PSD at 60 Hz (dB/Hz) 

Before 
filtering 

After  
filtering 

Attenuation

117 
20 23 -30 53 

100 36 -30 66 

119 
20 23 -23 46 

100 36 -22 58 

203 
20 23 -23 46 

100 38 -23 61 

207 
20 23 -25 48 

100 36 -25 61 

210 
20 23 -30 53 

100 36 -30 66 

 
Table 6  COR & PRD criteria for evaluating noise 
suppression.  

ECG 
Baseline wander 60 Hz interferences 

COR (%) PRD (%) COR (%) PRD (%) 

117 100 0 100 0,152 

119 100 0 100 0,290 

203 100 1,44×10-13 100 0,691 

207 100 1,93×10-13 100 0,221 

210 100 1,57×.10-13 100 0,230 
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For the 60 Hz power line noise, we see that it is 

completely removed regardless of its magnitude, and 

we get the sinusoidal shape of the noise. The PSD 

after filtering has the same value of each signal. 

It is established in Ref. [14] that if the PRD value is 

between 0% and 9%, the quality of the reconstructed 

signal is either“very good” or “good”, whereas if the 

value is greater than 9% its quality group cannot be 

determined. As we are strictly interested in very good 

and good reconstructions, it is taken that the PRD 

value, as measured with Eq. (10), must be less than 

9%. Table 6 shows that our method performs a COR 

equal to 100%, and a PRD equal to 0.691% at most. 

This reflects that the two signals, before and after 

denoising, are identical. 

6. Conclusion  

In this work, we have presented a new approach 

based on discrete wavelet decomposition for 

denoising the ECG signals. The results illustrate that 

the DWT is an efficient technique to filter noises 

without altering a real morphology ECG signals 

because the duration, amplitude and shape of the P 

wave, QRS complex and T wave are not modified. 

This technique applies to all types of ECG signals, 

whether they are normal or presenting arrhythmias. 

Hence, this process allows cardiovascular experts to 

make a proper analysis. It can be integrated in 

automatic ECG analysis systems. 
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