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Abstract: Gait event detection is important for diagnosis and evaluation. This is a challenging endeavor due to subjectivity, high 

amount of data, among other problems. ANFIS (Artificial Neural Fuzzy Inference Systems), ARX (Autoregressive Models with 

Exogenous Variables), OE (Output Error models), NARX (Nonlinear Autoregressive Models with Exogenous Variables) and models 

based on NN (neural networks) were developed in order to detect gait events without the problems mentioned. The objective was to 

compare developed models’ performance and determinate the most suitable model for gait events detection. Knee joint angle, heel 

foot switch and toe foot switch during normal walking in a treadmill were collected from a healthy volunteer. Gait events were 

classified by three experts in human motion. Experts’ mean classification was obtained and all models were trained and tested with 

the collected data and experts’ mean classification. Fit percentage was obtained to evaluate models performance. Fit percentages 

were: ANFIS: 79.49%, ARX: 68.8%, OE: 71.39%, NARX: 88.59%, NNARX: 67.66%, NNRARX: 68.25% and NNARMAX: 

54.71%. NARX had the best performance for gait events classification. For ARX and OE, previous filtering is needed. NN’s models 

showed the best performance for high frequency components. ANFIS and NARX were able to integrate criteria from three experts 

for gait analysis. NARX and ANFIS are suitable for gait event identification. Test with additional subjects is needed. 
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1. Introduction

 

Since walking is a pattern of motion, diagnosis of 

the patient’s difficulties depends on an accurate 

description of the actions occurring at each joint. 

Traditionally, the method used for such description 

has been observed the patients gait. While performing 

the observation in a systematic manner results in more 

agreement among observers, there still is 

disagreement on details. An alternate approach is 

quantitated documentation of the person’s 

performance with reliable instrumentation that 

provides a permanent record of fact [1]. However, the 

analysis of quantitative data has been a challenging 

endeavour [2]. The high amount of data, nonlinear 

dependencies, inter-subject and intra-subject 
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variability, among others, are typical problems when 

motion analysis is performed. These complexities are 

compounded by long recording times in gait 

laboratories, and increasing patient populations result 

in late diagnosis， leading to an increased risk of 

disorder progression and further complications [3]. 

CI (Computational Intelligence) is a fusion of 

learning mechanisms and computing, specifically 

suited for powerful decision systems capable of 

interpreting and processing large volumes of data [3]. 

ANFIS (Artificial Neural Fuzzy Inference Systems), 

ARX (Autoregressive Models with Exogenous 

Variables), NARX (Nonlinear Autoregressive Models 

with Exogenous Variables) and OE (Output Error 

models) are four of many techniques that can be used 

for pattern recognition, therefore, are suitable for gait 

analysis. With CI, it is possible to model a 

biomechanical system by learning data relationships 

between inputs and outputs possibly corrupted by 
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external noise; this system could represent a 

discriminator between gait disorders, a predictor of 

gait succession, etc. [3]. 

The present work reports a comparison of 

performance between ANFIS, ARX, OE, NARX and 

Artificial Neural Networks for classification of gait 

events during normal walking. 

1.1 ANFIS 

ANFIS are a combination of a Fuzzy Inference 

System with a neural network. This kind of systems 

take the advantage of adaptability and learning of the 

neural networks, and they also use inference linguistic 

rules (if-then type) of fuzzy logic [4]. 

With ANFIS is possible to build functional adaptive 

networks equivalents to fuzzy systems like Mamdani 

or Sugeno; for Sugeno systems, the adaptable network 

is built like shown in Fig. 1. 

As proposed by Jang [5], these types of networks 

have different kinds of neurons. The circular neurons 

on Fig. 1 represent fixed nods, and the square neurons 

are adaptive nods; the last have a series of variable 

parameters, while the others do not. On the first layer 

all nods are square. These nods contain the 

membership functions corresponding to the Sugeno 

System Fuzzyfication. The parameters involved to 

these neurons modify the shape and location of the 

functions. Their outputs are the membership values of 

each input (X and Y in this case) for each membership 

function (A1, B1, A2 and B2). This is represented by: 

𝑂𝑖
1 = 𝜇𝐴𝑖

(𝑋)               (1) 

where, i is the number of nods in the first layer (in this 

case i = 1, 2, 3, 4) and 𝜇𝐴𝑖
 is the membership 

function labeled as Ai where X (the input) is evaluated. 

On the second layer, every nod is fixed. Those nods 

contain the MIN function, with which the output 

obtained is the minimal membership value calculated 

by the fuzzyfication on the previous layer; each nod in 

this layer represents an if-then type of rule. This way, 

each nod on the second layer is represented as 

follows: 

𝑊𝑖 = 𝜇𝐴𝑖
 𝑋 𝜇𝐵𝑖

 𝑌  ;  𝑖 =  1, 2        (2) 

where,  𝑊𝑖  is obtained by the MIN operation  

between the result of the evaluation of X and Y in the 

membership functions 𝜇𝐴𝑖
 and 𝜇𝐵𝑖

 respectively. As 

in the second layer, the third is formed by fixed nods. 

This layer normalizes the firing strengths. The 

equation of each nod is: 

𝑊𝑖
   =

𝑊𝑖

𝑊1+𝑊2
 ;  𝑖 =  1, 2          (3) 

On the fourth layer are the output functions or 

defuzzyfication functions of the Sugeno system. These 

functions depend on the parameters of the equations, 

which are the coefficients of the output functions. So, 

in case of linear functions the corresponding equations 

would be: 

𝑓1 = 𝑝1𝑋 + 𝑞1𝑌 + 𝑟1           (4) 

The parameters that define the function are 𝒑𝟏 , 

𝒒𝟏  and 𝒓𝟏 . These fourth layer outputs turn in to 

inputs of the fifth and last layers, which have only one 

fixed neuron, containing the sum function to complete 

the defuzzyfication. 
 

 
Fig. 1  ANFIS equivalent of a Sugeno fuzzy system. 
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The learning process of the system consists on 

finding the right values of the adaptive nodes to obtain 

the desirable output of a certain input. This parameters, 

as mentioned before are of two types: (1) The defining 

parameters of the membership functions, such as form 

and location (parameters of the premises); (2) The 

parameters defining the output functions (the 

polynomial coefficients), or the consequences.  

For system identification, it must be chosen a model 

within a group of models which equals the best on the 

dynamic and static characteristics of the system to 

identify. The basic principle of identification depends 

on a group of parameters θ, changing the problem of 

identification to a problem of parameters estimation.  

Fuzzy systems can be used to identify non-linear 

systems, but the rules and design of the membership 

functions depend on the designer, dropping the 

precision of the model. Auto adjusting neural 

networks can also be used; however, the networks 

could get trapped in local minimums in a long period 

of training [4]. ANFIS combine the virtues of both, 

neural networks and fuzzy logic, avoiding the 

mentioned inconveniences, making them an attractive 

option for non-linear systems identification. 

Fuzzy Logic Systems have been used for gait 

events detection in order to emulate muscle activation 

patterns during FES (functional electrical stimulation) 

gait [6, 7]. Both authors reported that Fuzzy Logic 

Systems are suitable for gait events detection and have 

good performance in comparison with classification 

using a look-up table [6] and threshold detection 

method [7]. Some other authors have used ANFIS for 

gait analysis [8, 9]. Jonic et al. compared ANFIS 

performance for generate rules to control locomotion 

versus multilayer perceptron with Levenberg-Marquardt 

modification of backpropagation learning algorithm 

and a combination of an entropy minimization type of 

inductive learning; ANFIS gave the most explicit, 

comprehensible and fewer rules of classification using 

ground reaction forces, hip acceleration, knee and hip 

joint angles and the angle between the trunk and the 

horizontal as the system inputs [8]. Lauer and 

colleagues found that ANFIS is capable to detect 

seven phases of gait with a high degree of accuracy 

and repeatability using electromyography as system 

input [9]. 

1.2 ARX and OE 

Autoregressive Models with Exogenous Variables 

and Output Error Models are linear parametric models 

based on the next system representation: 

𝑦 𝑡 + 𝑎1𝑦 𝑡 − 1 + ⋯ + 𝑎𝑚𝑦 𝑡 − 𝑚 = 

𝑏1𝑢 𝑡 − 1 + ⋯ + 𝑏𝑛𝑢 𝑦 − 𝑛 + 𝑒(𝑡)    (5) 

where, 𝑦(𝑡) are the system outputs at time 𝑡, 𝑢(𝑡) 

are the system inputs at time 𝑡  and 𝑒(𝑡) are the 

system error signals (such as noise, disturbances, etc) 

at time 𝑡. 𝑎𝑖 , 𝑖 = 1,2,… ,𝑚 are adjustable parameters 

related with the system outputs and 𝑏𝑖 , 𝑖 = 1,2,… , 𝑛 

are adjustable parameters related with the system 

inputs. Using 𝑞 as a shift operator (where 𝑞−𝑖𝑥 𝑡 =

𝑥(𝑡 − 𝑖)), equation (5) can be re-written: 

𝑦 𝑡  1 + 𝑎1𝑞
−1 + ⋯+ 𝑎𝑚𝑞−𝑚 = 

𝑢 𝑡  𝑏1𝑞
−1 + ⋯ + 𝑏𝑛𝑞

−𝑛 + 𝑒 𝑡      (6) 

From equation (6), polynomials 𝐴(𝑞) and 𝐵(𝑞) 

are defined as: 

𝐴 𝑞 = 1 + 𝑎1𝑞
−1 + ⋯+ 𝑎𝑚𝑞−𝑚      (7) 

𝐵 𝑞 = 𝑏1𝑞
−1 + ⋯ + 𝑏𝑛𝑞

−𝑛         (8) 

For SISO systems, 𝐴(𝑞)  and 𝐵(𝑞)  are 

polynomials, while for MIMO systems, they are 

polynomial matrices (one polynomial per input or 

output). Finally, ARX model structure is given by: 

𝑦 𝑡 = 𝐴−1 𝑞 𝐵 𝑞 𝑢 𝑡 + 𝐴−1 𝑞 𝑒(𝑡)   (9) 

In conclusion, model identification using ARX is 

reduced to find the correct coefficients of polynomial 

matrices 𝐴(𝑞) and 𝐵(𝑞). This can be done using 

least squares method in order to minimize the error 

between the actual system output and the model 

output as shown in the next equation. 

1

𝑁
  𝑦 𝑡 − 𝑦 (𝑡) 2𝑁

𝑡=1         (10) 

where, 𝑦(𝑡) is the system output and 𝑦 (𝑡) is the 

model output. In the same way, OE model structure 
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has the next form: 

𝑦 𝑡 = 𝐹−1 𝑞 𝐵 𝑞 𝑢 𝑡         (11) 

As can be seen, OE model has a simpler structure 

than ARX model, which makes its implementation 

easier. The first step when identification with linear 

parametric models is being used is to choose a  

correct model structure considering accuracy and 

complexity. 

Autoregressive models have been barely used for 

gait analysis, including a few attempts of the design of 

postural stability criterion, capture of shape 

deformations in gait, modeling of energy transfers 

during normal walking, and design of falls detection 

systems [3]. No gait events detection with ARX or OE 

have been reported as far as the authors know, 

although autoregressive models have shown to be 

capable of linearly separate different gait patterns 

better than other methods such as statistical descriptor 

or wavelet decomposition [3]. 

1.3 NARX 

Nonlinear Autoregressive Models with Exogenous 

Variables are a powerful class of nonlinear dynamical 

models used in many applications [10]. They 

constitute nonlinear extensions of the conventional 

linear ARX models. NARX models offer a number of 

advantages, including accuracy and compactness of 

representation, physical significance, and direct 

correspondence between the NARX and the physical 

system parameters [11]. The NARX model is based on 

the linear ARX model, which is commonly used in 

time-series modeling. Defining equation for the 

NARX model is as follows: 

𝑦 𝑡 = 𝑓 𝑦 𝑡 − 1 , 𝑦 𝑡 − 2 ,… , 𝑦 𝑡 − 𝑚  , 𝑢 𝑡 −

1 , 𝑢 𝑡 − 2 ,… , 𝑢 𝑡 − 𝑛  + 𝑒(𝑡)    (12) 

where the next value of the dependent output signal 

y(t) is regressed on previous values of the output 

signal and previous values of an independent 

(exogenous) input signal [12]. 

Tafazoli et al. used NARX models for identification 

of neuromuscular system in combination with ARX 

models, in which ARX gets the linear part of the 

system and the NARX picks up the nonlinearities. The 

combined method showed a better performance than 

ARX and NARX separately due to ability of 

combined model structure to model nonlinear 

dynamical systems [11]. Although NARX models 

have proved to be a powerful approach to 

identification of nonlinear phenomena [10-13], as far 

as the authors know, no gait events detection with 

NARX have been reported. 

1.4 Neural Networks 

ARX, OE, and other model structures can be trained 

as neural networks do. The estimation problem of 

matrices A(q), B(q) and F(q), which define the model 

structure, is addressed as a estimation of the network’s 

weights. Thus, regardless the model structure (ARX, 

OE, NARMAX, etc), neural networks can be 

developed for systems identification. This represents 

an attractive solution, since neural networks have 

good performances at learning nonlinear relationships 

from a set of data. ARX and OE models structures 

were presented on subsection B, ARMAX structure is 

as follows: 

𝑦 𝑡 = 𝐴−1 𝑞 𝐵 𝑞 𝑢 𝑡 + 𝐴−1 𝑞 𝐶 𝑞 𝑒(𝑡) (13) 

C(q) is defined as A(q) ad B(q) are: 

𝐶 𝑞 = 1 + 𝑐1𝑞
−1 + ⋯+ 𝑐𝑘𝑞

−𝑘      (14) 

Therefore, for an ARMAX model, the coefficients 

that will be estimated through the neural network 

training will be [a1, …, am, b1, …, bn, …, c1, …, ck]. 

2. Methods 

It was asked to a healthy volunteer to walk on a 

treadmill at a constant self-selected pace for one 

minute. Knee joint angle was measured with a twin 

axis goniometer SG150 (Biometrics Ltd, UK). Only 

knee  flexion-extension  data  was  recorded  from 

goniometer. Additionally, heel contact and toe off 

were detected with two foot switches placed on 

volunteer’s footwear, one at the heel and one at the toe 

(Fig. 2). All data was collected at the Human Motion 
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Fig. 2  Sensors for gait data collection. Picture on left shows the goniometer placed on volunteer’s leg in order to measure 

knee’s flexion/extension angle. Picture on right shows both foot switches placed on volunteer’s footwear (heel and toe). 
 

Analysis Laboratory at the National Rehabilitation 

Institute (INR) in Mexico City. 

Twenty five strides at constant velocity were 

considered for model identification and testing. Initial 

and final steps were not used due to the inherent 

acceleration and deceleration at those moments. All 

strides were identified by initial contact (heel foot 

switch transition from “inactive status” to “active 

status”) and cut from one initial contact to subsequent 

initial contact. Once separated, every stride was 

normalized in terms of gait cycle percentage. All data 

processing and identification was done using Matlab 

v7.4.0 (The MathWorks, Inc., USA). 

For every stride, seven gait phases were identified 

by three motion analysis experts at INR using the 

collected data, knee angular velocity (knee angle’s 

first forward difference) and knee angular acceleration 

(knee angular velocity’s first forward difference). The 

identified phases were: IC (Initial Contact), LR 

(Loading Response), MS (Mid Stance), TSPSw 

(Terminal Stance/Pre-Swing), ISw (Initial Swing), 

MSw (Mid Swing) and TSw (Terminal Swing). A 

numeric value was assigned for every phase: 1-IC, 

2-LR, 3-MS, 4-TSPSw, 5-ISw, 6-MSw, 7-TSw. The 

mean of the experts’ gait phase classification was 

obtained and used for the model training/estimation 

and validation. The experts’ mean classification is 

shown on Fig. 3. 

Identification with all models was done using three 

inputs: knee angle, heel foot switch and toe foot 

switch; and one output: gait phase. 

The first ten strides were used for training and 

estimation. The last 15 strides were used for model 

validation. 
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Fig. 3  Five consecutive resampled strides. On upper graph, knee angle (dashed line), heel foot switch (solid line) and toe foot 

switch (dotted line) is shown, while in lower graph, the corresponding experts’ mean gait phase classification. 
 

ANFIS fuzzyfication was made using Matlab’s 

Fuzzy Toolbox, with the following settings: eight 

Gaussian membership functions for knee angle input, 

and three Gaussian membership functions for both, 

heel foot switch input and toe foot switch input, 

constant output, hybrid optimization method, error 

tolerance of 0.001 and 80 epochs. ANFIS model was 

tested with Matlab’s Simulink. 

For ARX, OE and NARX identification, the model 

was estimated using least squares for error 

minimization. For ARX, the number of poles used for 

the estimated model was 5, while the number of 

zeroes was 29 for knee angle input, 29 for heel foot 

switch input and 29 for toe foot switch input; also, a 

dead time of 7 was selected for knee angle and 9 for 

both foot switches. As for OE, the number of zeroes 

selected was 5 for knee angle, 6 for heel foot switch 

and 7 for toe foot switch; the number of poles was 7 

for knee angle, 8 for heel foot switch and 9 for toe 

foot switch; finally, a dead time of 3 was selected for 

knee angle and for heel foot switch, while 4 was 

selected for toe foot switch. For the NARX model, the 

orders of the function: 

𝑦 𝑡 = 𝑓 𝑦 𝑡 − 1 , 𝑦 𝑡 − 2 ,… , 𝑦 𝑡 − 𝑚  , 𝑢 𝑡 −

𝑛𝑘 , 𝑢 𝑡 − 𝑛𝑘 − 1 ,… , 𝑢 𝑡 − 𝑛𝑘 − 𝑛𝑏 − 1      (15) 

where, m=1, nkknee=4, nkheel=3, nktoe=1, nbknee=2, 

nbheel=1, nbtoe=1. As for the neural networks, in all the 

cases a two layers network was used and training was 

made using Levenberg-Marquardt method. 

For NNARX model, the hidden layer was formed 

by eight tanh units and one tanh unit in the output 

layer. The number of past inputs and past outputs used 

was one for each variable (knee angle, heel foot 

switch, toe foot switch, and gait phase), as well as the 

time delay. NNARX training was delimitated to 500 

maximum iterations, and a weight decay of 1e-3. 

NNRARX model had the same structure than the 

NNARX model; however, the training parameters 

were 1 iteration, and 1e-3 for weight decay, the initial 

weights matrices were fixed for optimal performance. 

For NNARMAX model, the hidden layer was formed 

by seven tanh units and one tanh unit in the output 

layer. The number of past inputs, past outputs and past 

residuals used was one for each variable, the time 
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delay was one for the knee angle and two for heel foot 

switch and for toe foot switch. The maximum 

iterations for training was 200 and the weight decay 

was 1e-3. Also, a moving average filter of 4 delays 

window was used at the output of the neural network. 

Comparison between estimated models outputs and 

the real system output was made with a fit percentage, 

obtained by: 

𝑓𝑖𝑡 = 100 × 1 −
 𝑜𝑢𝑡 𝑟𝑒𝑎𝑙 −𝑜𝑢𝑡𝑚𝑜𝑑𝑒𝑙  

 𝑜𝑢𝑡 𝑟𝑒𝑎𝑙 −𝑚𝑒𝑎𝑛 (𝑜𝑢𝑡 𝑟𝑒𝑎𝑙 ) 
     (16) 

where, 𝑜𝑢𝑡𝑟𝑒𝑎𝑙  is the validation data and 𝑜𝑢𝑡𝑚𝑜𝑑𝑒𝑙  

is the model output. Fit percentage was also calculated 

between each expert classification and experts’ mean. 

3. Results 

Fit percentage between each expert classification 

and experts’ mean is shown in Table1. 

ANFIS model used 72 if-then rules to perform the 

classification; Fig. 4 shows the phase gait estimated 

by ANFIS model and the phase gait determined by the 

experts. Fit percentage for ANFIS model was 79.49%. 

ARX output compared versus experts’ classification is 

shown on Fig. 5. Fit percentage for ARX model was 

68.8%. Fit percentage for OE model was 71.39% and 

is shown on Fig. 6. Fit percentage for NARX model 

was 88.59% (Fig. 7). Figs. 8-10 show NNARX  

(67.66% fit percentage), NNRARX (68.25% fit 

percentage) and NNARMAX (54.71% fit percentage) 

output classifications versus experts’ mean. 

It can be seen, from Fig. 4 to Fig. 10, that all 

models have the biggest error where the high 

frequency elements are present (at the corners of the 

squared signal), being ARX model the most affected 

by this high frequency components. The second error 

region for ANFIS models is located between the fifth 

and the sixth gait phase (Initial Swing and Mid Swing). 

It could be because the angle values during these 

phases are in the same range, and additional data from 

foot switches is not available since the leg is not 

supported on the ground; then, the system cannot 

identify if the angle is increasing or decreasing with 

the input information. Angular velocity would help 

the system to recognize the difference between these 

two phases. NNARX and NNRARX show an error 

region at the seventh gait phase, perhaps due to the 

abrupt changes between phases 7 and 1, making 

impossible to the neural network to follow them as 

fast as other models.  

Model fit percentage for every stride was calculated 

in order to evaluate the model’s performance in 

individual cycles. This was done only for ANFIS and 

NARX models since those were the models with the 

best global fit percentage. The results are shown in 

Table 2. 

4. Discussion and Conclusion 

Gait events classification is a complex task that 

requires experience and knowledge from the evaluator. 

Even when the evaluator has both experience and 

knowledge, it can be hard to identify gait phases using 

only a limited amount of data and without looking at 

the subject performing the test. The three experts that 

participated in this experiment expressed the difficulty 

to evaluate the gait cycles; in fact, it took about     

an hour for each expert to classify the gait events of 

the 25 cycles. Also, the experts asked for more 

information such as angular velocity and angular 

acceleration in order to make the classification. It is 

also important to notice that gait evaluation, even with 

the help of technology (in this case foot switches and 
 

Table1  Fit percentage between experts classification and experts’ mean. 

Fit percentage Experts’ mean Expert 1 Expert 2 Expert 3 

Experts’ mean  87.03% 83.60% 88.56% 

Expert 1 87.03%  73.11% 81.98% 

Expert 2 83.60% 73.11%  74.73% 

Expert 3 88.56% 81.98% 74.73%  
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Table 2  Individual stride’s fit percentage for ANFIS and 

NARX models versus experts’ mean. 

Stride Mean [%] ANFIS Mean [%] NARX 

1 83.357 87.745 

2 81.969 88.262 

3 80.929 88.685 

4 79.160 88.913 

5 76.629 89.099 

6 72.342 88.942 

7 74.920 89.493 

8 77.130 88.864 

9 80.155 88.618 

10 78.712 89.441 

11 80.647 88.976 

12 80.107 88.661 

13 81.605 88.585 

14 84.509 88.889 

 

goniometer), is affected by subjectivity, since it is 

performed by a human. Criteria and chosen references 

might vary between the evaluators, resulting in a 

variation between experts’ classification shown in 

Table1. However, it doesn’t mean that any of the three 

experts made a wrong evaluation, but that the gait 

classification made by human observers might be 

slightly different between them. Actually, the fit 

percentage between expert 2 and the other experts 

(73.11% and 74.73%) is minor than the fit percentage 

between ANFIS and the experts’ mean (79.49%) and 

NARX (88.59%), this suggests that ANFIS and 

NARX are suitable for gait event classification, since 

the difference of the classification made with the 

models and the experts’ mean classification is 

comparable with the difference that could be found 

between the evaluations made by experts. Even more, 

fit percentage for individual strides evaluated with 

ANFIS model (shown on Table 2) is, in some cases, 

higher than 80%, and higher than 87% for all strides 

classified by NARX model. Nevertheless, it is 

important to say that even when there were differences 

between experts’ evaluations, the mean that used for 

training and validation since the results of the model 

identification was not affected by such differences. 

This made the training/estimation process simpler. 

Also it is important to consider that all models tested, 

only used three inputs for gait events detection, while 

the experts needed two additional inputs (angular 

velocity and acceleration), it means that the developed 

identification systems can differentiate gait events 

with fewer inputs than the experts.  

ANFIS and NARX had better performance than 

ARX and OE (79.49%, 88.59%, 68.8% and 71.39% fit 

percentages respectively). It is known that high 

frequency components might be challenging for ARX 

and OE models since they are linear models, and that 

is why it is commonly recommended to perform a 

low-pass filtering before estimation. However, for this 

case, filtering could affect the evaluation of the gait 

events, since there would be a slope between phases 

(instead the abrupt changes between them that dictate 

the end of a phase and the beginning of the next phase) 

that would make difficult to determine which phase 

corresponds to a particular set of inputs. Still, ARX 

and OE might be useful for different evaluations or 

biomechanics applications that don’t have to deal with 

high frequency components. Despite ARX and OE 

models had lower accuracy than ANFIS and NARX, it 

must be said that linear models had fair enough 

performance and could be used for applications where 

the obtained fit percentages are tolerated. However, 

nonlinear models, such as NARX showed a better 

performance for identification of this particular system. 

This was expected due to the complexity of the output 

of the system, which presents abrupt changes between 

gait phases and a cyclic behavior. 

Neural networks are suitable for treatment of 

nonlinear relationships; therefore it would be expected 

to obtain favorable results using these algorithms in 

order to identify nonlinear systems [14]. However, in 

this work, results with NN’s didn t́ show better 

performances than those obtained with linear models 

(ARX and OE). This might be because, even if the 

estimation problem is addressed with NN’s, the model 

structure still is linear. It is important to observe that,  
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Fig. 4  Gait phase estimated by ANFIS. The solid line is the phase of gait estimated. The dotted line corresponds to the 

actual gait phases as determined by the experts. Fit percentage: 79.49%. 
 

 
Fig. 5  Gait phase estimated by ARX. The dashed line is the phase of gait estimated. The solid line corresponds to the actual 

gait phases as determined by the experts. Fit percentage: 68.8%. 
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Fig. 6  Gait phase estimated by OE. The dashed line is the phase of gait estimated. The solid line corresponds to the actual 

gait phases as determined by the experts. Fit percentage: 71.39%. 

 

 
Fig. 7  Gait phase estimated by NARX. The dashed line is the phase of gait estimated. The solid line corresponds to the 

actual gait phases as determined by the experts. Fit percentage: 88.59%. 
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Fig. 8  Gait phase estimated by NNARX. The dashed line is the phase of gait estimated. The solid line corresponds to the 

actual gait phases as determined by the experts. Fit percentage: 67.6652%. 
 

 
Fig. 9  Gait phase estimated by NNRARX. The dashed line is the phase of gait estimated. The solid line corresponds to the 

actual gait phases as determined by the experts. Fit percentage: 68.2582%. 
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Fig. 10  Gait phase estimated by NNARMAX. The dashed line is the phase of gait estimated (with a moving average filter 

with 4 past inputs). The solid line corresponds to the actual gait phases as determined by the experts. Fit percentage: 

54.7123%. 
 

even though NN models did not show better 

performances than linear models, the conflict regions 

of the signal that were found for identification with 

linear models (the corners of the square signal), did 

not seem to represent a major problem for the NN 

models. In fact, the high frequency changes of the 

signal were well followed by the NNARX, NNRARX 

and NNARMAX models. It is interesting to observe 

that NN models had the best performance between sub 

phases 3, 4, 5 and 6; because of this, it is important to 

continue to explore the application of such models for 

the identification of gait phases, probably with a larger 

set of data. 

Skelly et al. used a system divided in two levels, a 

lower level containing the fuzzy logic estimator and 

an upper level with a supervisor system; they reported 

an accuracy of 80% with the fuzzy logic estimator 

(before the supervisor system) [7], which is similar to 

the accuracy obtained with the ANFIS system 

developed (79.49%), however, one of the problems for 

the real time implementation was the number of rules 

contained by the fuzzy gait phase detector, Skelly’s 

system had 210 rules, while ANFIS model developed 

has 72 rules. Using the same idea with Skelly of a 

two-level system, it could be used a second stage of 

processing in order to improve the system 

performance, such as saturation (since it is previously 

known that there are no phases higher than seven or 

lower than one) and rounding (which would help to 

make abrupt transitions between phases). It must be 

noticed that the number of inputs used by Skelly’s 

system was eight (four per foot), while ANFIS 

developed here used only three, this could suggest that 

using more data (such as angular velocity) would 

improve performance and it will be still a lower 

number of sensors. 

Kuen et al. used the same number of sensors that 

we used (except in one subject for which Kuenused 

the data from two legs), but the number of rules 

obtained by Kuen was at least 100 [6]. For Kuen’s 

system, percentage of correct detection varies from 

more than 80% to less than 45%, and the best 
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performance was obtained with the subject using six 

sensors. In comparison with our ANFIS system, 

correct detection percentage is similar, but the number 

of rules is smaller and the number of sensors used for 

a 79.79% fit percentage was only three at all times, 

being possible to obtain more information without 

placing more sensors on the subject. 

Jonic’s ANFIS system used four sensors and 

reported a cross correlation of 0.95 for muscle activity 

prediction and a 0.999 cross correlation for knee joint 

angle; these outputs do not have high frequency 

components as high as in gait event detection, and that 

is why ANFIS have such a good performance. The 

system developed shown that even with high 

frequency components in the output, ANFIS can be 

used and Jonic’s system showed that ANFIS is highly 

accurate for identification of systems with relatively 

low frequency components. 

Lauer et al. also used a SCS (supervisory control 

system) [9] as Skelly did [7], and reported a greater 

than 95% of accuracy. This shows that SCS’s improve 

considerably the system’s performance and marks part 

of the future work of this paper. It must be noticed 

that Lauer used electromyography signals as inputs, 

and it is necessary to retrain the system due to the 

variations in the placement of the surface recording 

electrodes and differences in skin impedance. These 

problems are not present with the sensors suggested in 

this work (goniometer and foot switches), however, 

there are some other problems to be solved such as the 

obstruction of the wires and the goniometer 

calibration. 

To improve the NARX model performance a low 

pass filter might be used, since the major areas of 

error were located in the corners of the square signal, 

but it is important to consider that this could reduce 

the capability of the abrupt changes between sub 

phases that the NARX model reached. 

It is also important to observe that the fit percentage 

for individual strides can reach 84% for ANFIS and 

89% for NARX, since the identification system might 

be used as part of a control system in real time, this is 

the fit percentage that would affect the system 

performance. 

The main achievement of the ANFIS and NARX 

model developed is that they made possible that the 

gait events classification considering more than one 

criteria, combining three different points of view from 

the experts. This is important since subjectivity is one 

of the most common problems in gait analysis in 

practice. The opportunity to create systems capable to 

include more than one opinion of the same problem 

enriches the gait evaluation system gathering the 

experience from different evaluators being this, the 

experience, the most important factor for gait 

evaluation in the clinical application of gait analysis. 

This suggests that it could be possible to create 

different systems capable to reunite the expertise of 

different evaluators in different areas of the clinical 

assessment, not only for gait event detection, but also 

for pathological patterns of motion, upper limb motion 

analysis, pattern recognition of daily living activities, 

making possible to evaluate motion outside the clinic, 

etc. 

In conclusion, NARX model had the best 

performance. However, ARX and OE linear models 

could be used in applications without high frequency 

components. NNARX, NNRARX and NNARMAX 

are models that should be explored in the future 

because they showed a good performance in the 

middle sub phases of the gait, and the might achieve a 

better performance with a larger group of data and 

SCS. Also, ANFIS had a performance comparable 

with previously reported fuzzy systems, but it could 

be improved with supervisory systems and additional 

data. ANFIS’ ability of generalization makes it an 

attractive system for gait events classification and it 

also should be explored in more depth. Individual 

stride fit percentage reached 89% of accuracy versus 

experts’ mean. It was possible to train a system 

capable to consider the criteria of three different 

experts in human motion analysis. 
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Future work will include the incorporation of 

supervisory systems, additional data for 

training/estimation, and gathering criteria from more 

experts. 
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