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Abstract: Most conventional robust design methods assume design solutions are fixed values. Using these methods, designers set each 
control factor to a fixed value to maximize the robustness of objective characteristics. However, fluctuations in the objective 
characteristic often exceed the allowable range in a design problem. Consequently, it is difficult to obtain sufficient robustness using 
conventional methods. This research defines adjustable control factors whose values can be adjusted within a given range to increase 
robustness and proposes a method to calculate robustness, including factors to adjust the objective characteristic and derive optimum 
ranges of the factors. The robustness index, which indicates the feasibility that the objective characteristic values are within the 
tolerance by the adjustment, is calculated by the Monte Carlo method, while the range of adjustable control factors is optimized using 
the Vector evaluated particle swarm optimization. Finally, an engineering example is presented to demonstrate the applicability of the 
proposed method. 
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1. Introduction 

Robust design aims to ensure product performance 

robustness against fluctuant factors, such as user 

characteristics and material properties, by deriving the 

optimum (unique) value of the design parameter 

(design solution). Due to globalized markets and 

material procurement, robust design has received 

much attention, and many robust design methods have 

been proposed [1]. Some methods evaluate robustness 

of the objective characteristic using an orthogonal 

array for efficiency [2-5], while others derive 

robustness using the objective characteristic values 

calculated via a Taylor series approximation [6-12]. 

Additionally robustness has been calculated as the 

feasibility of the objective characteristic being within 

the tolerance to consider the objective characteristic 

distribution [13, 14]. 

In most conventional methods, designers set control 

factors to fixed values to maximize the robustness. In 

cases where the objective characteristic distribution is 
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smaller than the tolerance (Fig. 1a), these methods can 

derive a design solution (optimized control factor 

values) x0 with sufficient robustness. However, in 

cases where the objective characteristic distribution is 

larger than the tolerance (Fig. 1b), a solution to 

sufficiently maximize robustness cannot be obtained. 

In such cases, the control factors must be adjusted to 

ensure robustness. In other words, as the values of the 

control factors are varied, the whole of the objective 

characteristic distribution should be located within the 

tolerance (Fig. 1c). 

The concept of adjusting the factors originates from 

Taguchi’s method [3]. In this method, the control 

factors are set to minimize the objective characteristic 

fluctuation, and then the designer selects a tuning 

factor, which has a negligible effect on the fluctuation 

to minimize the difference between the nominal value 

of the objective characteristic and its target value. Otto 

[15] assumed the tuning factor is adjusted after the 

fluctuation of objective characteristic. Hence, after the 

objective characteristic fluctuates, the factors are 

altered to minimize the difference between the 

fluctuated objective characteristic values and their target 
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Fig. 1  Conceptual illustration of a design problem that includes a factor whose value is adjustable. 
 

values. Otto proposed a method to evaluate the 

robustness using the expected value of the objective 

characteristic adjusted by the tuning factors. This 

method provided a new concept of robustness in 

which an adjustment improves the robustness and it 

helps relax the design requirements such as dimension 

tolerance and material property tolerance. However, 

Otto’s method is not applicable to design problems 

where the designer chooses the tuning factors and 

their adjustable ranges because these parameters are 

preliminarily set in Otto’s method. This is a common 

problem in mechanical design. For example, to design 

a seat, the designer must determine which adjustable 

mechanism, such as seat reclining mechanism, and its 

adjustable range to apply to the seat. Because a 

method to address such a design problem has yet to be 

proposed, the designer must determine these 

parameters using his/her personal design experience. 

This research proposes a method to derive the 

optimum range for the adjustable factors which are 

chosen adequately to improve the robustness of the 

objective characteristics. This paper is divided as 

follows: Section 2 presents definitions and 

terminologies; the proposed robustness index, 

calculation method, and range optimization of the 

factors using the VEPSO (vector evaluated particle 

swarm optimization) are described in Section 3; 

Section 4 illustrates an application of the proposed 

method to a seat design problem; while Section 5 

provides conclusions and the future research 

direction. 

2. Definitions and Terminologies 

In robust design, objective characteristic (product 

performance) y fluctuates according to fluctuant factors 

(control factors x and noise factors z). Although the 

values of control factors fluctuate, designers can set 

their nominal values, but not those of noise factors. In 

this paper, ACFs (adjustable control factors) whose 

values t can be adjusted in the adjustable range [t1, tu] 

anytime while using or manufacturing the product to 

maintain the objective characteristic are newly defined. 

t1 and tu are the lower and upper values of ACFs, 

respectively. ACFs are similar to the tuning factors 

defined in Otto’s method [15] with respect to their 

adjustment, but the adjustable ranges of ACFs and 

tuning factors differ (i.e., the designer defines the 

ranges of the ACFs). 

The concept of robustness in this research is defined 

below. If the tolerance of objective characteristic [y1, yu] 

exists as shown in Fig. 1, then ACFs can be adjusted to 

locate each fluctuation value of the objective 

characteristic within the tolerance. Hence, the 

robustness index for ACFs (RA) is defined as the 

feasibility that the objective characteristic values are 

within the tolerance at least once by the adjustment of 

ACFs. Using ACFs and RA, design problems in this 

research are expressed as shown in Eq. (1): 
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where, f is the objective function. To prevent an 

unnecessary expansion of the ACF ranges, which 

increases the production costs and failure rate, this 

formulation does not only maximize RA. Minimizing 

the size of the range described in Eq. (1) is an example 

of preventing an unnecessary expansion because other 

factors (e.g., the form and location of the range) can 

lead to the aforementioned issues. 

Below are definitions and descriptions of the 

terminologies used in this paper: 

 Objective characteristic (y = f(x, z, t)): The 

characteristic to express the function of the design 

objective, and is calculated by objective function f. 

 Control factors (x = {xi}, i = 1, 2, ..., nx): Factors 

whose nominal values are set by the designer, but 

fluctuate the objective characteristic. nx represents the 

total number of control factors. 

 Noise factors (z = {zi}, i = 1, 2, ..., nz): Factors that 

fluctuate the objective characteristic, but their nominal 

values cannot be set by designers. nz expresses the total 

number of noise factors. 

 ACFs (t = {ti}, i = 1, 2, ..., nt): Control factors with 

nominal values that can be adjusted within their 

adjustable ranges. nt denotes the total number of ACFs. 

 Adjustable range of ACFs ([tu, t1]): The range 

defined by the designer, where the ACFs are adjustable. 

 Assignable points of ACFs ({tj}, j = 1, 2, ..., nap): 

The combinations of ACFs’ values that can be varied to 

be within the adjustable range. nap denotes the number 

of ACFs’ assignable points. 

 Robustness index (RA): Index to evaluate the 

robustness of the objective characteristics with regards 

to the ACFs adjustment. 

3. Robust Design Method for ACFs 

3.1 Robustness Index for ACFs 

In conventional robust design methods, robustness 

indices are approximated to improve the calculated 

efficiency. For example, the index in Ramakrishnan’s 

method [11], which is the weighted sum of the mean 

value and standard deviation of the objective 

characteristic, is calculated by using a Taylor series 

approximation. However, approximated values 

significantly differ from the actual values or cannot be 

derived in the cases where the followings are not 

satisfied: (1) The objective characteristics 

monotonically increase or decrease with respect to the 

factors; (2) The objective function is differentiable; (3) 

The fluctuations in the factors are sufficiently small; 

and (4) The factors are independent from each other. 

The proposed robustness index must be calculated 

accurately because the adjustable range must be 

minimized as shown in Eq. (1). In other words, by using 

an accurate robustness index, the designers must set the 

adjustable range as small as possible. Consequently, the 

Monte Carlo method, which derives accurate values but 

is time consuming, is applied to calculate the index. The 

calculation methods is described below. 

All ACFs’ assignable point values should be used to 

calculate RA. Specifically, sets of objective 

characteristic fluctuations that satisfy the tolerance are 

derived with respect to all assignable point values tj, as 

shown in Fig. 2. RA is calculated as the ratio of the sum 

of the sets of fluctuant combinations of x and z where at 

least one of the objective characteristic values yj 

derived from tj is within the tolerance shown in Eq. (2): 
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Fig. 2  Set of the objective characteristic fluctuations used 
to calculate the robustness index. 

yuyl

p( y )

Tolerance
ull ),,(),(

l
ytfyCt  zxzx

ul ),,(),( ytfyC iti
 zxzx

ul ),,(),(
apap

ytfyC ntn
 zxzx

y

tl
tj…

…

t

P
ro

ba
bi

li
ty

 P

apnt

A
djustable 

range

yuyl

p( y )

Tolerance
ull ),,(),(

l
ytfyCt  zxzx

ul ),,(),( ytfyC iti
 zxzx

ul ),,(),(
apap

ytfyC ntn
 zxzx

y

tl
tj…

…

t

P
ro

ba
bi

li
ty

 P

apnt

A
djustable 

range



Robust Design Method for Adjustable Mechanisms 

  

19

where, the square bracket expresses a set of C(x, z) 

where the objective characteristic is located within the 

tolerance by adjusting ACFs. This means RA is the rate 

of the set and the entire set. The assignable point values 

are expressed as a finite number of discontinuous 

values tj because RA is calculated by using the Monte 

Carlo method. The number of the assignable 

(discontinuous) values should be sufficient to assume 

the ACF is continuous. However, the number should be 

decreased if the calculation amount is too large. To 

calculate RA, first, s random combinations of the 

control and noise factors are generated based on their 

probability density functions. Second, objective 

characteristic yi is calculated by using the generated 

random combinations {xi, zi} ( i = 1, 2, ..., s) and all the 

assignable point values. That is, the number of 

calculating objective characteristic values is the 

product of the random combination number s and the 

assignable points numbers of ACFs. Finally, the values 

calculated from each random combinations of xi and zi 

are assessed to determine whether at least one of the 

calculated values is within the tolerance (i.e., at least 

one assignable point which consists an objective 

characteristic value that satisfies the tolerance). Then 

RA is calculated as 
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3.2 Adjustable Range Optimization 

This study proposed an optimization algorithm 

using the VEPSO in order to solve the design problem 

of Eq. (1). An outline of the VEPSO and the algorithm 

using are described below. 

3.2.1 Outline of VEPSO 

The VEPSO [16, 17] is an improved method of the 

PSO [18] that is one of the representative 

metaheuristics in order to handle the multi objective 

optimization problems. The PSO imitates the 

movement of organisms in a bird flock or fish school 

and searches a solution by using the information both 

from the individuals (particles) and their swarm. The 

VEPSO assigns an objective to each of swarms and 

searches a solution using the information inside or 

between swarms. The location vector (i.e., design 

variables) of the i-th particle in the j-th swarm xi
[j] is 

updated as follows: 
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where, T is the number of iterations; v is the velocity 

vector to direct the particles to the updated locations 

and is calculated as 
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where, M is the number of swarms. c1 and c2 are the 

parameters to express the degree of incidence of the 

private best location of each particle xpb and the global 

best location xgb, respectively; r1 and r2 denote the 

random numbers uniformly distributed in [0, 1]. w is 

the parameter to define the effect of the current velocity 

vector and decreases based on T as shown in Eq. (6): 
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where, wmax and wmin are the maximum and minimum 

value of w, respectively. Tmax is the maximum number 

of the iterations. k denotes the parameter relating the 

convergence performance and expressed as Eq. (7): 
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As shown in Eq. (5), the velocity vectors are defined 

by using the global best locations of the different 

swarms. This enables the solution search based on the 

information from the other swarms and the global 

locations (solutions) of the swarms to approach each 

other. Therefore, the solution search of the VEPSO has 

the following features: assigning a objective to each of 

swarms and searching the solutions located close to 

each other. These features generate the following 

merits to solve the robust design problem (Eq. (1)): (1) 
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The design solution (assignable points) to ensure the 

robustness can be efficiently derived by assigning the 

robustness regarding the part of the fluctuation of the 

factors to each of the swarm; (2) The distance between 

assignable points (the adjustable range) can be smaller. 

3.2.2 Procedure to Derive Optimum Adjustable 

Range Using VEPSO 

This study amended the robustness index (Eq. (2)) in 

order to evaluate each assignable point that assures the 

robustness regarding the part of the fluctuation of the 

factors. The robustness assured by the j-th assignable 

point is expressed in Eq. (8): 

  ul ),,(, yfyCPR jjj  tzxzx
 

   (8) 

where, C(x, z)j (∈C(x, z) ) is a part of the fluctuation of 

the factors assigned to the j-th assignable point and 

holds Eq. (9): 

   zxzx ,, CC j            (9) 

When considering the four assignable points, the 

four swarms are defined and search for the adjustable 

range (assignable points) based on the VEPSO 

procedure. The optimization algorithm using the 

VEPSO is described in Fig. 3. In this algorithm, the 

parameters of the VEPSO (e.g., c, w, Tmax, etc.) are 

firstly set. Next, the number of the assignable points is 

decided and the same number of the swarms is set. The  
 

 
Fig. 3  Proposed algorithm of robust design method. 

locations of the particles are updated based on the 

objective (robustness) Rj (j = 1, 2, ..., nap). The update 

of the locations iterates until T = Tmax, and the global 

best location of the swarms are derived as an design 

solution (adjustable range). 

4. Illustrative Example 

4.1 Problem Description 

To demonstrate the proposed robust design method, 

we applied it to a seat design for railway vehicles 

because numerous people with diverse physiques and 

sitting postures use these seats. However, the 

conventional seat design typically assumes an average 

physique and posture. Thus, designing a seat that is 

robust for various physiques and postures is desirable. 

Herein the design objective focused on the hip-sliding 

force, which is generated on the buttocks by the static 

instability of the upper and lower body masses, causing 

discomfort when sitting [19]. Therefore, the design 

objective is to inhibit the hip-sliding force for various 

physiques and postures. 

Table 1 defines the objective characteristic and 

factors of this design. The control factors, seat cushion 

angle C, seat back angle B, and forward tilt angle of the 

upper seat back F, can be adjusted by the mechanisms 

for the seat cushion forefront lifting function, reclining 

function, and forward tilt function, respectively. 

Previous research [20] has demonstrated the influence 

of these angles on the hip-sliding force. Therefore,  
 

Table 1  Definition of objective characteristic and factors. 

Items Definition 
Hip-sliding force  
(as objective 
characteristic) 

Tolerance of Hip-sliding force: 
-10-20 N 

Seat cushion angle θC

Seat back angle θB 

Forward tilt angle θF 
(as ACFs) 

10 ≤ θC ≤ 25 
20 ≤ θB ≤ 35, θC + 10 ≤ θB 
0 ≤ θF ≤ 30 

Body height L 
Body height M 
Sitting posture 
(as noise factors) 

L and M are normal distributions 
Mean value of L: 1.65 m, standard 
deviation of L: 0.08 m 
Mean value of M: 58.1 kg , standard 
deviation of M: 9.09 kg 
Ratio of standard, stretched waist and 
bent waist sitting postures: 3:1:6 

Yes

START

STOP

Derive optimal adjustable range.

Generate (update) particle location vector of 
each swarm (evaluation points of AFCs) 

Calculate Rj and set global and private best location

No
T = Tmax

Set values of VEPSO (c, w, Tmax, etc.)

Update velocity and location vector 
of each particle

Yes

START

STOP

Derive optimal adjustable range.

Generate (update) particle location vector of 
each swarm (evaluation points of AFCs) 

Calculate Rj and set global and private best location

No
T = Tmax

Set values of VEPSO (c, w, Tmax, etc.)

Update velocity and location vector 
of each particle
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these angles are considered ACFs. Noise factors 

include users’ physiques and sitting postures. The 

physiques are defined based on actual measurements of 

Japanese citizens [21]. Additionally, we considered 

three sitting postures: a standard sitting posture where 

the lumbar region is in contact with the seat back, a 

stretched waist sitting posture where the waist is 

stretched and slid forward from the standard sitting 

posture, and a bent waist sitting posture where the waist 

is bent and slid forward from the standard sitting 

posture. The ratio of these sitting postures is 3:1:6 [19]. 

Sagittal plane model of the human body and the seat 

(Fig. 4) was used to derive the objective function. The 

human model assumes that the movements of the low 

momentum joints are zero and is consequently, 

composed of four high momentum joints. On the other 

hand, the seat model, constructed based on the existing 

seat found on a 485 train (Hatsukari), is divided into 

three parts: seat cushion, upper seat back and lower seat 

back, which are rigidly linked. Figs. 5a-5c show the 

objective functions (the formula to compute the 

hip-sliding force for each posture) of standard, 

stretched waist and bent waist sitting posture derived 

based on these models. The robustness index (RA) is 

derived as the weighted sum of the indices calculated by 

using these formulae. 

Additionally, in the PSO, the parameters (e.g., c, w, 

etc.) are important for the convergence or the 

computational efficiency. Therefore, this study 

implemented some optimizations regarding the 

recommended values of the parameters in the 

conventional studies and compared the results to clarify 

the proper values of them. This study focused on c1 and 

c2 and conducted the four analyses by using the 

parameter combinations: (c1 = 2.80, c2 = 1.30) 

recommended by Carlisle [22]; (2.05, 2.05) suggested 

by Kennedy [23]; (1.55, 2.55) and (1.05, 3.05) that are 

smaller values of c1. This study also implemented the 

optimization using the traditional GA (genetic 

algorithm). The definition of the parameters is 

summarized in Table 2. 

 
Fig. 4  Model of the human body and seat. 
 

Table 2  Definition of parameters. 

Items 

Set value 

GA 
Proposed method 
(Analysis) 
1 2 3 4 

Tolerance of y -10 ≤ y ≤ 20 

Feasible area of t1 10 ≤ θC ≤ 25 

Feasible area of t2 20 ≤ θB ≤ 35, θB ≤ θC + 10 

Feasible area of t3 0 ≤ θF ≤ 30 

Max iteration number Tmax 10,000 100 

c1 - 2.8 2.05 1.55 1.05

c2 - 1.3 2.05 2.55 3.05

wmin - 0.4 

wmax - 0.9 

Number of assignable points 2 2 (number of swarms)

Swarm size - 20 

Solution number 5 

4.2 Results 

The design solutions (adjustable ranges) derived by 

the proposed method using the different parameters 

and by the GA are shown in Fig. 6. Additionally, the 

Euclidean distance between assignable points D is 

calculated in order to compare the size of the adjustable 

range. The average and the standard deviation of the 

distance are indicated as shown in Table 3. Fig. 6 and 

Table 3 show the adjustable ranges derived by the 

proposed method are smaller than and assure as same 

robustness as those by the GA. Particularly, the mean 

value and the standard deviation of the adjustable 

ranges derived in analysis 2 are small. This means the 

values of the parameter (c1 = c2 = 2.05) are suitable to 

minimize the adjustable range. This is caused by the 

two features of the VEPSO: (1) The larger c2 prevents 

the global solution search same as the PSO; (2) The 
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Fig. 5  Hip-sliding force estimation equations. 
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Fig. 6  Solution candidates of each analysis. 
 

Table 3  Results of analyses. 

Method (c1, c2) RA μD σD 

GA - 0.996 17.7 4.07 

Proposed 
method 
(analysis) 

1 (2.8, 1.3) 0.998 3.92 9.66 

2 (2.05, 2.05) 0.999 0.23 0.79 

3 (1.55, 2.55) 0.999 0.49 1.41 

4 (1.05, 3.05) 0.999 1.21 4.36 

larger c2 encourages the swarms to search the area 

close to each other. Because of the trade-off 

relationship between the two features, the same degree 

of incidence is compromised to be an optimum value in 

the proposed method. 

5. Conclusions 

In this research, ACFs which can be adjusted within 

a given range to increase the robustness were defined. 

Additionally, a method to calculate the robustness RA, 

including the objective characteristics adjustment by 

the factors and derive an optimum range of the factors 

is proposed. RA indicates the feasibility that the 

objective characteristic values are within the tolerance 

at least once by the adjustment of ACFs. A calculation 

method for the index, which uses the Monte Carlo 

method, are proposed. In contrast, the range of ACFs 

is optimized by the vector evaluated particle swarm 

optimization. In the procedure, RA is used to evaluate 

the particles in several swarms, and each particle 

searches for the optimum adjustable range of ACFs. 

The proposed method was applied to an engineering 

example (seat design problem). In this application, it 

was confirmed that the proposed method can derive 

the design solution with high robustness and small 

adjustable range. 
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